首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   5篇
  国内免费   9篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
21.
The effects of stress shocks on the freeze-drying viability, malolactic activity and membrane fatty acid composition of the Oenococcus oeni SD-2a cells were studied. O. oeni SD-2a cells after 2 h of stress exposure exhibited better freeze-drying viability and malolactic fermentation ability. A decrease in unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in C19cyc11 relative concentration were observed in all stress shocked cells. There was a significant negative correlation between C19cyc11 and C18:lcis11, C16:0 in all stress shocks. The freeze-drying viability exhibited a significant positive correlation with the levels of C19cyc11 in cold and acid shocks. The only significant positive correlation between the ability of O. oeni SD-2a to conduct malic acid degradation and membrane composition existed with C14:0 in ethanol shocks. In general, freeze-drying viabilities were maximum for cells with low UFA/SFA ratio and high CFA levels, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting stress shocked cells from lyophilization. However, changes observed in membrane fatty acid composition are not enough to explain the greater freeze-drying viability of cells shocked at 8% ethanol. Thus, other mechanisms could be responsible for this increase in the bacterial resistance to lyophilization.  相似文献   
22.
The interaction with lipids of a synthetic peptide corresponding to the transmembrane domain of influenza hemagglutinin was investigated by means of electron spin resonance. A detailed analysis of the electron spin resonance spectra from spin-labeled phospholipids revealed that the major effect of the peptide on the dynamic membrane structure is to induce highly ordered membrane domains that are associated with electrostatic interactions between the peptide and negatively charged lipids. Two highly conserved residues in the peptide were identified as being important for the membrane ordering effect. Aggregation of large unilamellar vesicles induced by the peptide was also found to be correlated with the membrane ordering effect of the peptide, indicating that an increase in membrane ordering, i.e., membrane dehydration, is important for vesicle aggregation. The possibility that hydrophobic interaction between the highly ordered membrane domains plays a role in vesicle aggregation and viral fusion is discussed.  相似文献   
23.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   
24.
This study describes the synthesis and vacuole-inducing activity of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carbohydrazide derivatives, including five potent derivatives 12c, 12 g, 12i, 12n, and 12A that exhibit excellent vacuole-inducing activity. Remarkably, 12A effectively induces methuosis in tested cancer cells but not human normal cells. In addition, 12A exhibits high pan-cytotoxicity against different cancer cell lines but is hardly toxic to normal cells. It is found that the 12A-induced vacuoles are derived from macropinosomes but not autophagosomes. The 12A-induced cytoplasmic vacuoles may originate from the endoplasmic reticulum (ER) and be accompanied by ER stress. The MAPK/JNK signalling pathway is involved in the 12A-induced methuotic cell death. Moreover, 12A exhibits significant inhibition of tumour growth in the MDA-MB-231 xenograft mouse model. The excellent potency and selectivity of 12A prompt us to select it as a good lead compound for further development of methuosis inducers and investigation of the molecular and cellular mechanisms underlying methuosis.  相似文献   
25.
26.

Background

Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor.

Methodology/Principal Findings

We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment.

Conclusion/Significance

The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma.  相似文献   
27.
鄂尔多斯台地盐沼滩地微生物群落与土壤条件分析   总被引:2,自引:1,他引:1  
[背景]我国北方内陆区与平原区土地盐碱化问题严重,针对微生物如何在极端盐碱地植被演替过程中发挥作用的研究鲜有报道.[目的]研究鄂尔多斯台地5种不同植被类型的盐沼湿地微生物群落与土壤条件的关系,筛选出耐盐碱菌群及影响耐盐碱菌群的土壤环境因子.[方法]采用高通量测序技术,对其微生物细菌群落组成进行了比对分析.[结果]鄂尔多...  相似文献   
28.
蛇类标记方法的商讨   总被引:1,自引:0,他引:1  
宋鸣涛 《蛇志》1993,5(2):15-17
蛇类动物的标记是研究蛇类动物的形态、生理和生态等方面的较理想的方法。本文介绍了剪鳞标记、热烙标记、冷“烙”标记、标签标记以及涂色标记等。  相似文献   
29.
The neuroprotective properties of bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate-induced excitotoxicity were investigated in primary cultured cerebellar granule neurons (CGNs). Exposure of CGNs to 75 mum glutamate resulted in neuronal apoptosis as demonstrated by Hoechst staining, TUNEL, and DNA fragmentation assays. The bis(7)-tacrine treatment (0.01-1 mum) on CGNs markedly reduced glutamate-induced apoptosis in dose- and time-dependent manners. However, donepezil and other AChE inhibitors, even at concentrations of inhibiting AChE to the similar extents as 1 mum bis(7)-tacrine, failed to prevent glutamate-induced excitotoxicity in CGNs; moreover, both atropine and dihydro-beta-erythroidine, the cholinoreceptor antagonists, did not affect the anti-apoptotic properties of bis(7)-tacrine, suggesting that the neuroprotection of bis(7)-tacrine appears to be independent of inhibiting AChE and cholinergic transmission. In addition, ERK1/2 and p38 pathways, downstream signals of N-methyl-d-aspartate (NMDA) receptors, were rapidly activated after the exposure of glutamate to CGNs. Bis(7)-tacrine inhibited the apoptosis and the activation of these two signals with the same efficacy as the coapplication of PD98059 and SB203580. Furthermore, using fluorescence Ca(2+) imaging, patch clamp, and receptor-ligand binding techniques, bis(7)-tacrine was found effectively to buffer the intracellular Ca(2+) increase triggered by glutamate, to reduce NMDA-activated currents and to compete with [(3)H]MK-801 with an IC(50) value of 0.763 mum in rat cerebellar cortex membranes. These findings strongly suggest that bis(7)-tacrine prevents glutamate-induced neuronal apoptosis through directly blocking NMDA receptors at the MK-801-binding site, which offers a new and clinically significant modality as to how the agent exerts neuroprotective effects.  相似文献   
30.
Mn-SOD对CHO细胞电离辐射敏感性的影响   总被引:2,自引:0,他引:2  
近年来的研究发现,IL-1和TNF是重要的辐射防护因子,因IL-1和TNF都能选择性诱导Mn-SOD的高度表达,因此认为Mn-SOD可能有辐射防护作用.通过转染有义和反义Mn-SOD cDNA于CHO细胞,进一步说明了Mn-SOD在抗电离辐射损伤中的作用.研究表明,转染有义Mn-SOD cDNA可降低细胞对电离辐射的敏感性, 而转染反义Mn-SOD cDNA的细胞克隆对电离辐射的敏感性升高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号