首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185692篇
  免费   155321篇
  国内免费   30814篇
  371827篇
  2022年   4024篇
  2021年   6468篇
  2020年   4811篇
  2019年   7501篇
  2018年   7013篇
  2017年   5581篇
  2016年   7196篇
  2015年   9714篇
  2014年   11058篇
  2013年   11574篇
  2012年   13548篇
  2011年   13152篇
  2010年   10154篇
  2009年   14532篇
  2008年   9855篇
  2007年   9223篇
  2006年   7345篇
  2005年   6634篇
  2004年   5896篇
  2003年   5129篇
  2002年   5361篇
  2001年   6295篇
  2000年   3845篇
  1999年   8499篇
  1998年   9816篇
  1997年   9988篇
  1996年   9270篇
  1995年   9501篇
  1994年   8824篇
  1993年   8391篇
  1992年   8579篇
  1991年   8482篇
  1990年   9171篇
  1989年   8268篇
  1988年   7497篇
  1987年   6545篇
  1986年   5995篇
  1985年   5471篇
  1984年   4188篇
  1983年   3391篇
  1982年   3640篇
  1981年   3270篇
  1980年   3184篇
  1979年   3304篇
  1978年   3012篇
  1977年   2929篇
  1976年   2756篇
  1973年   2505篇
  1972年   2833篇
  1971年   2610篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A2 (cPLA2). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA2-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA2 activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis.  相似文献   
113.
114.
In aquatic birds, influenza A viruses mainly replicate in the intestinal tract without significantly affecting the health of the host, but in mammals, they replicate in the respiratory tract and often cause disease. Occasionally, influenza viruses have been detected in stool samples of hospitalized patients and in rectal swabs of naturally or experimentally infected mammals. In this study, we compared the biological and molecular differences among four wild-type avian H1N1 influenza viruses and their corresponding fecal and lung isolates in DBA/2J and BALB/cJ mice. All fecal and lung isolates were more pathogenic than the original wild-type viruses, when inoculated into mice of both strains. The increased virulence was associated with the acquisition of genetic mutations. Most of the novel genotypes emerged as PB2E627K, HAF128V, HAF454L, or HAH300P variations, and double mutations frequently occurred in the same isolate. However, influenza virus strain- and host-specific differences were also observed in terms of selected variants. The avian H1N1 virus of shorebird origin appeared to be unique in its ability to rapidly adapt to BALB/cJ mice via the fecal route, compared to the adaptability of the H1N1 virus of mallard origin. Furthermore, a bimodal distribution in fecal shedding was observed in mice infected with the fecal isolates, while a normal distribution was observed after infection with the lung isolates or wild-type virus. Fecal isolates contained HA mutations that increased the activation pH of the HA protein. We conclude that influenza virus variants that emerge in fecal isolates in mammals might influence viral transmission, adaptation to mammals, and viral ecology or evolution.  相似文献   
115.
116.
As one of the first found cytokines, macrophage migration inhibitory factor (MIF) plays an important role in several physiological processes in crabs. In this study, a full-length MIF cDNA (GenBank accession number: JX131610) from mud crab Scylla paramamosain (Sp) was cloned based on a sequence of S. paramamosain cDNA library. The full length of SpMIF was 734 bp consisting of a 363 bp open reading frame encoding the SpMIF, a 120 amino acid peptide chain. The molecular weight of SpMIF was 13.46 kDa with the pI of 6.82. The alignment analysis showed that SpMIF appeared to be closely related to the counterpart from Eriocheir sinensis (68%). Quantitative real-time PCR analysis revealed that SpMIF was highly expressed in hepatopancreas and hemocytes. In addition, the expression level of SpMIF was increased significantly after a 6-h challenge by Vibrio parahaemolyticus (4.00 × 106 CFU/mL), peaked at 8 h, and then declined to the common level in 48 h. This data indicated that SpMIF was cloned successfully, and suggested that it participated in the immune system of mud crabs.  相似文献   
117.
A rapid, simple and sensitive high-performance liquid chromatography tandem mass spectrometry method was developed and validated for simultaneous determination of six main steroidal saponins in Paris polyphylla in rat plasma. Ginsenoside Rg3 was selected as the internal standard (IS). Plasma samples were pretreated with protein precipitation, and the separation was achieved on a reverse phase Agilent poroshell120 EC-C18 column using a gradient mobile phase system of acetonitrile–water containing 0.1% formic acid. The triple quadruple mass spectrometer was set in negative electrospray ionization mode and multiple reaction monitoring (MRM) was used for six steroidal saponins quantification. The precursors to produce ion transitions monitored for polyphyllin I, polyphyllin II, polyphyllin VI, polyphyllin VII, dioscin, gracillin and IS were m/z 899.5 > 853.4, 1059.5 > 1013.5, 783.4 > 737.4, 1075.5 > 1029.5, 913.5 > 867.4, 929.5 > 883.4 and 819.5 > 783.4, respectively. The intra- and inter-day precisions (RSD%) were less than 13% and the average extraction recoveries ranged from 85% to 97.0% for each analyte. Six steroidal saponins were proved to be stable during sample storage, preparation and analytical procedures. The established method was employed for simultaneous quantification and successfully used for the first time for the pharmacokinetics evaluation of the six main compounds after intragastric administration of P. polyphylla extract in Sprague–Dawley rats.  相似文献   
118.
Hormones regulate the mechanism of plant growth and development, senescence, and plants’ adaptation to the environment; studies of the molecular mechanisms of plant hormone action are necessary for the understanding of these complex phenomena. However, there is no measurable signal for the hormone signal transduction process. We synthesized and applied a quantum dot-based fluorescent probe for the labeling of jasmonic acid (JA) binding sites in plants. This labeling probe was obtained by coupling mercaptoethylamine-modified CdTe quantum dots with JA using N-hydroxysuccinimide (NHS) as a coupling agent. The probe, CdTe–JA, was characterized by transmission electron microscopy, dynamic light scattering, and fluorescent spectrum and applied in labeling JA binding sites in tissue sections of mung bean seedlings and Arabidopsis thaliana root tips. Laser scanning confocal microscopy (LSCM) revealed that the probe selectively labeled JA receptor. The competition assays demonstrated that the CdTe–JA probe retained the original bioactivity of JA. An LSCM three-dimensional reconstruction experiment demonstrated excellent photostability of the probe.  相似文献   
119.
Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2′-phosphate of NADPH, but also could enhance the binding with 2′-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2′-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号