全文获取类型
收费全文 | 7639篇 |
免费 | 542篇 |
国内免费 | 707篇 |
专业分类
8888篇 |
出版年
2024年 | 25篇 |
2023年 | 100篇 |
2022年 | 258篇 |
2021年 | 411篇 |
2020年 | 304篇 |
2019年 | 347篇 |
2018年 | 324篇 |
2017年 | 265篇 |
2016年 | 362篇 |
2015年 | 500篇 |
2014年 | 564篇 |
2013年 | 614篇 |
2012年 | 762篇 |
2011年 | 642篇 |
2010年 | 363篇 |
2009年 | 365篇 |
2008年 | 387篇 |
2007年 | 328篇 |
2006年 | 289篇 |
2005年 | 238篇 |
2004年 | 206篇 |
2003年 | 177篇 |
2002年 | 153篇 |
2001年 | 151篇 |
2000年 | 115篇 |
1999年 | 100篇 |
1998年 | 68篇 |
1997年 | 71篇 |
1996年 | 70篇 |
1995年 | 54篇 |
1994年 | 49篇 |
1993年 | 31篇 |
1992年 | 41篇 |
1991年 | 20篇 |
1990年 | 25篇 |
1989年 | 19篇 |
1988年 | 16篇 |
1987年 | 16篇 |
1986年 | 11篇 |
1985年 | 18篇 |
1984年 | 9篇 |
1983年 | 6篇 |
1982年 | 5篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1966年 | 1篇 |
1965年 | 2篇 |
排序方式: 共有8888条查询结果,搜索用时 15 毫秒
51.
52.
Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement 总被引:1,自引:0,他引:1
53.
54.
55.
Jing Zhang Donghui Wen Cui Zhao Xiaoyan Tang 《Applied microbiology and biotechnology》2014,98(2):863-873
Bioaugmentation with degrading bacteria is an effective method to improve the treatment of refractory industrial wastewater; nevertheless there were controversial opinions about the fate of inoculated bacteria and microbial community dynamics. In this study, two lab-scale sequencing batch reactors filled with modified zeolite were used to treat a coking wastewater with pyridine and quinoline shock load, and a bacterial consortium containing three degrading strains was added in one reactor for bioaugmentation. During 120-day operation, the bioaugmented reactor removed over 99 % pyridine, 99 % quinoline, 85 % TOC, 65 % COD, and 95 % NO3 ?-N with higher resistance to the shock load than the non-bioaugmented reactor. Based on the terminal restriction fragment length polymorphism of 16S rDNA, bacterial community diversity increased in the bioaugmented reactor. Principal component analysis revealed that, to cope with the shock load, the indigenous bacterial community recovered to the initial structure by acclimatizing itself constantly to the inhospitable environment; but bioaugmentation accelerated the shift of whole bacterial community, resulting in a far different structure from the initial one. Canonical correspondence analysis indicated that the environmental parameters of pyridine, quinoline, TOC, and NO3 ?-N had close negative correlations with bioaugmentation; and NH3-N and COD were the main parameters to impact on the bacterial community changes and treatment efficiency. 相似文献
56.
Effects of Nickel Chloride on the Erythrocytes and Erythrocyte Immune Adherence Function in Broilers
Jian Li Bangyuan Wu Hengmin Cui Xi Peng Jing Fang Zhicai Zuo Junliang Deng Xun Wang Kun Tang Shuang Yin 《Biological trace element research》2014,161(2):173-179
This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p?0.05 or p?0.01) and erythrocyte osmotic fragility (EOF) was higher (p?0.05 or p?0.01) in the 600 and 900 mg/kg groups at 28 and 42 days of age than those in the control group, and the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and calcium adenosine triphosphatase (Ca2+-ATPase) activities were significantly decreased (p?0.05 or p?0.01) in the NiCl2-treated groups. The results of erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p?0.05 or p?0.01) in the 600 and 900 mg/kg groups and in the 300 mg/kg group at 42 days of age, whereas the erythrocyte immune complex rosette rate (E-ICRR) was markedly increased (p?0.05 or p?0.01) in the 300, 600, and 900 mg/kg groups at 28 and 42 days of age. It was concluded that dietary NiCl2 in excess of 300 mg/kg caused anemia and impaired the erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function. 相似文献
57.
Jiang Y. Li Y. M. Wang S. D. Cui G. W. Wang H. 《Russian Journal of Plant Physiology》2019,66(3):469-476
Russian Journal of Plant Physiology - To explore proteomic characters of Kunitz-type trypsin inhibitors (KTIs) deleted soybean (Glycine max (L.) Merr.), seeds without KTIs and its female parent... 相似文献
58.
Chen X Shang H Qiu X Fujiwara N Cui L Li XM Gao TM Kong J 《Neurochemical research》2012,37(4):835-845
Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly
related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study
the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox
state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative
stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress,
it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased
levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate
an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation
of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation
of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the
formation of disulfide bond-independent aggregation of SOD1. 相似文献
59.
An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells 总被引:1,自引:0,他引:1
Human brains retain discrete populations of micro RNA (miRNA) species that support homeostatic brain gene expression functions; however, specific miRNA abundance is significantly altered in neurological disorders such as Alzheimer disease (AD) when compared with age-matched controls. Here we provide evidence in AD brains of a specific up-regulation of an NF-kappaB-sensitive miRNA-146a highly complementary to the 3'-untranslated region of complement factor H (CFH), an important repressor of the inflammatory response of the brain. Up-regulation of miRNA-146a coupled to down-regulation of CFH was observed in AD brain and in interleukin-1beta, Abeta42, and/or oxidatively stressed human neural (HN) cells in primary culture. Transfection of HN cells using an NF-kappaB-containing pre-miRNA-146a promoter-luciferase reporter construct in stressed HN cells showed significant up-regulation of luciferase activity that paralleled decreases in CFH gene expression. Treatment of stressed HN cells with the NF-kappaB inhibitor pyrollidine dithiocarbamate or the resveratrol analog CAY10512 abrogated this response. Incubation of an antisense oligonucleotide to miRNA-146a (anti-miRNA-146a; AM-146a) was found to restore CFH expression levels. These data indicate that NF-kappaB-sensitive miRNA-146a-mediated modulation of CFH gene expression may in part regulate an inflammatory response in AD brain and in stressed HN cell models of AD and illustrate the potential for anti-miRNAs as an effective therapeutic strategy against pathogenic inflammatory signaling. 相似文献
60.
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large‐scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin‐converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR‐1‐like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids. 相似文献