首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76145篇
  免费   5546篇
  国内免费   4861篇
  86552篇
  2024年   154篇
  2023年   1033篇
  2022年   2391篇
  2021年   4071篇
  2020年   2617篇
  2019年   3231篇
  2018年   3166篇
  2017年   2297篇
  2016年   3256篇
  2015年   4808篇
  2014年   5544篇
  2013年   5983篇
  2012年   7021篇
  2011年   6155篇
  2010年   3710篇
  2009年   3333篇
  2008年   3722篇
  2007年   3354篇
  2006年   2906篇
  2005年   2380篇
  2004年   1957篇
  2003年   1653篇
  2002年   1399篇
  2001年   1230篇
  2000年   1218篇
  1999年   1121篇
  1998年   661篇
  1997年   655篇
  1996年   666篇
  1995年   616篇
  1994年   543篇
  1993年   376篇
  1992年   568篇
  1991年   435篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
There are few reports of rhabdomyolysis caused by anticoagulants, and it is extremely rare for it to be caused by dabigatran etexilate. An 86-year-old female experienced sudden muscle weakness and pain, a significant increase in Creatine kinase, and renal impairment after oral administration of dabigatran etexilate for 3 weeks. The enhanced thigh MRI showed abnormal signal in multiple thigh muscle groups, indicating that the lesions should be considered inflammatory diseases. In conclusion, the possibility of rhabdomyolysis should be ruled out when muscle weakness and myalgia occur at the beginning of dabigatran etexilate treatment.  相似文献   
102.
103.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
104.
耐钙心肌细胞的分离和电生理特性观察   总被引:11,自引:1,他引:11  
用快速、恒压的无钙和胶原酶Tyrode液相继灌流豚鼠心脏冠脉系统后,再经无钙液室温浸泡心脏和用改变的K-B液帮助分离细胞的恢复,可获得耐钙的游离心肌细胞。全细胞电流记录:静息电位为-72±9mV(n=12),并显示出快内向电流(INa),可被异搏定阻断的慢钙离子流和时间依赖性外向钾流(Ik);单通道记录分别显示了Na+Ca2+和K+通道的电压依赖性等特征。结果表明了用此法分离的细胞具有耐钙性和正常电生理特性。  相似文献   
105.
Encroachment of woody plants into grasslands is a global phenomenon that has substantial impacts on pastoral productivity and ecosystem services. Over the past half century, pastoralists and land management agencies have explored various options to control woody plants in order to improve ecosystem services in shrub‐encroached grasslands. We examined the effectiveness of controlling the encroachment of the shrub Caragana microphylla into grassland in Inner Mongolia, China. We cut and removed all of the aboveground biomass from 450 shrubs, predicting that the effectiveness of this technique to control shrubs would depend on shrub morphology. Specifically, we expected that larger shrubs with more biomass would be more difficult to kill by cutting than smaller shrubs. A year after treatment, we found that cutting killed only 11% of the 450 treated shrubs, and of these, three‐quarters of the locations that they occupied reverted to grasses and one‐quarter to bare soil. Shrubs that survived the cutting treatment produced more stems and leaf biomass, and therefore had a greater leaf to stem ratio. Shrubs that died after cutting had a lower crown area and basal area, and less stem biomass than shrubs that resprouted within 12 months of cutting. There were no effects of shrub height on the fate of treated shrubs. Cutting had no effect on understory plant cover or richness, but reproductive plants were taller under shrubs that were not cut. Overall, our study showed that removing aboveground shrub biomass by cutting is an ineffective technique for “restoring” the original grassland community unless shrubs are very small. Strategic targeting of small shrubs would be a more effective technique for controlling the spread of C. microphylla in the long term.  相似文献   
106.
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.  相似文献   
107.
Characterization of in vitro substrates of protein kinases by peptide library screening provides a wealth of information on the substrate specificity of kinases for amino acids at particular positions relative to the site of phosphorylation, but provides no information concerning interdependence among positions. High-throughput techniques have recently made it feasible to identify large numbers of in vivo kinase substrates. We used data from experiments on the kinases ATM/ATR and CDK1, and curated CK2 substrates to evaluate the prevalence of interactions between substrate positions within a motif and the utility of these interactions in predicting kinase substrates. Among these data, evidence of interpositional sequence dependencies is strikingly rare, and what dependency exists does little to aid in the prediction of novel kinase substrates. Significant increases in the ability of models to predict kinase-substrate specificity beyond position-independent models must come largely from inclusion of elements of biological and cellular context, rather than further analysis of substrate sequences alone. Our results suggest that, evolutionarily, kinase substrate fitness exists in a smooth energetic landscape. Taken with results from others indicating that phosphopeptide-binding domains do exhibit interpositional dependence, our data suggest that incorporation of new substrate molecules into phospho-signalling networks may be rate-limited by the evolution of suitability for binding by phosphopeptide-binding domains.  相似文献   
108.
BACKGROUND: This study evaluates the eye drop delivery of genes with cornea-specific promoters, i.e., keratin 12 (K12) and keratocan (Kera3.2) promoters, by non-ionic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles (PM) to mouse and rabbit eyes, and investigates the underlying mechanisms. METHODS: Three PM-formulated plasmids (pCMV-Lac Z, pK12-Lac Z and pKera3.2-Lac Z) containing the Lac Z gene for beta-galactosidase (beta-Gal) whose expression was driven by the promoter of either the cytomegalovirus early gene, the keratin 12 gene or the keratocan gene, were characterized by critical micelle concentration (CMC), dynamic light scattering (DLS), and atomic force microscopy (AFM). Transgene expression in ocular tissue after gene delivery was analyzed by 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal) color staining, 1,2-dioxetane beta-Gal enzymatic activity measurement, and real-time polymerase chain reaction (PCR) analysis. The delivery mechanisms of plasmid-PM on mouse and rabbit corneas were evaluated by EDTA and RGD (arginine-glycine-aspartic acid) peptide. RESULTS: The sizes of the three plasmid-PM complexes were around 150-200 nm with unimodal distribution. Enhanced stability was found for three plasmid-PM formulations after DNase I treatment. After six doses of eye drop delivery of pK12-Lac Z-PM three times a day, beta-Gal activity was significantly increased in both mouse and rabbit corneas. Stroma-specific Lac Z expression was only found in pKera3.2-Lac Z-PM-treated animals with pretreatment by 5 mM EDTA, an opener of junctions. Lac Z gene expression in both pK12-Lac Z-PM and pKera3.2-Lac Z-PM delivery groups was decreased by RGD peptide pretreatment. CONCLUSIONS: Cornea epithelium- and stroma-specific gene expression could be achieved using cornea-specific promoters of keratin 12 and keratocan genes, and the gene was delivered with PM formulation through non-invasive, eye drop in mice and rabbits. The transfection mechanism of plasmid-PM may involve endocytosis and particle size dependent paracellular transport.  相似文献   
109.
Hung HC  Chien YC  Hsieh JY  Chang GG  Liu GY 《Biochemistry》2005,44(38):12737-12745
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.  相似文献   
110.
基因组规模代谢网络模型构建及其应用   总被引:1,自引:0,他引:1  
刘立明  陈坚 《生物工程学报》2010,26(9):1176-1186
微生物制造产业的发展迫切需要进一步提高认识、设计和改造微生物细胞代谢的能力,以推动工业生物技术快速发展。随着微生物全基因组序列等高通量数据的不断积聚和生物信息学策略的持续涌现,使全局性、系统化地解析、设计、调控微生物生理代谢功能成为可能。而基于基因组序列注释和详细生化信息整合的基因组规模代谢网络模型(GSMM)构建为全局理解和理性调控微生物生理代谢功能提供了最佳平台。以下在详述GSMM的应用基础上,描述了如何构建一个高精确度的GSMM,并展望了未来的发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号