首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5452篇
  免费   424篇
  国内免费   281篇
  6157篇
  2024年   6篇
  2023年   62篇
  2022年   141篇
  2021年   253篇
  2020年   178篇
  2019年   207篇
  2018年   188篇
  2017年   135篇
  2016年   212篇
  2015年   343篇
  2014年   385篇
  2013年   417篇
  2012年   510篇
  2011年   446篇
  2010年   271篇
  2009年   244篇
  2008年   269篇
  2007年   242篇
  2006年   192篇
  2005年   177篇
  2004年   168篇
  2003年   120篇
  2002年   108篇
  2001年   106篇
  2000年   93篇
  1999年   99篇
  1998年   40篇
  1997年   51篇
  1996年   41篇
  1995年   38篇
  1994年   30篇
  1993年   33篇
  1992年   41篇
  1991年   37篇
  1990年   46篇
  1989年   36篇
  1988年   23篇
  1987年   24篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1979年   14篇
  1978年   8篇
  1973年   9篇
  1972年   6篇
  1971年   9篇
  1968年   5篇
排序方式: 共有6157条查询结果,搜索用时 15 毫秒
991.
Zhong  Jun  Guo  Kun  Liao  Zheng-Lan  Hu  Shi-Chen  Du  Yu  Ji  Xiang 《Coral reefs (Online)》2022,41(1):53-62
Coral Reefs - Gut microbiota plays an important role in host nutrition, metabolism, immune, and homeostasis. Although there has been extensive research on gut microbiota over the past decade, few...  相似文献   
992.
Our previous study indicated that TGF-beta1 induced the expression of a transient outward K+ channel (A-type) during the phenotypic transformation of vascular fibroblasts to myofibroblasts. Here, we studied the relevant signal transduction pathway using whole cell recording and a quantitative RT-PCR technique. Results indicate that the protein kinase C (PKC) agonist phorbol-12-myristate-13-acetate (PMA, 1 microM) could mimic the effect of TGF-beta1 (20 ng/ml) on the expression of an A-type K+ channel and induced a similar A-type K+ current. Moreover, a PKC inhibitor, bisindolylmaleimide I (1 microM), could abrogate the effect of TGF-beta1 on K(V)4.2 expression. This result suggests that a PKC pathway may be involved in the expression of an A-type K+ channel induced by TGF-beta1 in rat vascular myofibroblasts.  相似文献   
993.
994.
Up to now, the serine-arginine protein kinase 1 (SRPK1) has been suggested as an important signal mediator, which is implicated in the development of cancers. Unfortunately, some molecular pathways in SRPK1-mediated epithelial-mesenchymal transition (EMT) in human spinal glioblastoma have been not elucidated. In this work, we detected the expression of SRPK1 in human spinal glioblastoma tissues and GBM cell lines and analyzed the relevant molecular proteins using in vitro experiments, including RT-PCR, gene silencing, and Western blot. In this study, RT-PCR and Western blot revealed that the expression of SRPK1 mRNA and protein became higher in all six spinal glioblastoma specimens; however, its expression was low in matched normal specimens. We also demonstrated SRPK1 expression facilitated the proliferation of U87 and U251 cells and inhibited the apoptosis in U87 and U251 cells. Also, SRPK1 promoted the expression of EMT-regulating markers, involving N-cadherin, Snail, and MMP9 and decreased the expression of mesenchymal marker E-cadherin. Moreover, knockdown of SRPK1 significantly inhibited the expression levels of p-Akt rather than t-Akt. In conclusion, knockdown of SRPK1 inhibited glioblastoma cell proliferation, invasion, and EMT process via suppressing p-Akt signaling pathway. This study also lays a new foundation for the clinically biological treatment.  相似文献   
995.
996.
Identifying DNA sequence variations is a fundamental step towards deciphering the genetic basis of traits of interest.Here,a total of 20 cultivated and 10 wild apples were genotyped using specific-locus amplified fragment sequencing,and 39,635 single nucleotide polymorphisms with no missing genotypes and evenly distributed along the genome were selected to investigate patterns of genome-wide genetic variations between cultivated and wild apples.Overall,wild apples displayed higher levels of genetic diversity than cultivated apples.Linkage disequilibrium(LD) decays were observed quite rapidly in cultivated and wild apples,with an r~2-value below 0.2 at 440 and 280 bp,respectively.Moreover,bidirectional gene flow and different distribution patterns of LD blocks were detected between domesticated and wild apples.Most LD blocks unique to cultivated apples were located within QTL regions controlling fruit quality,thus suggesting that fruit quality had probably undergone selection during apple domestication.The genome of the earliest cultivated apple in China,Nai,was highly similar to that of Malus sieversii,and contained a small portion of genetic material from other wild apple species.This suggested that introgression could have been an important driving force during initial domestication of apple.These findings will facilitate future breeding and genetic dissection of complex traits in apple.  相似文献   
997.
RpsA, also known as ribosomal protein S1, is an essential protein required for translation initiation of mRNAs when their Shine-Dalgarno sequence is degenerated (Sorensen et al. 1998). In addition, RpsA of Mycobacterium tuberculosis (M. tb) is involved in trans-translation, which is an effective system mediated by tmRNA-SmpB to release stalled ribosomes from mRNA in the presence of rare codons (Keiler 2008). Shi et al. found that POA binds to RpsA of Mtb and disrupts the formation of RpsA–tmRNA complex (Shi et al. 2011) and mutations at the C-terminus of RpsA confer PZA resistance. The previous work reported the pyrazinoic acid-binding domain of RpsA (Yang et al. Mol Microbiol 95:791–803, 2015). However, the HSQC spectra of the isolated S1 domain does not overlap with that of MtRpsA280-438, suggesting that substantial interactions occur between the flexible C-terminus and the S1 domain in MtRpsA .To further study the PZA resistance and how substantial interactions influence/affect protein structure, using heteronuclear NMR spectroscopy, we have completed backbone and side-chain 1H, 15N, 13C chemical shift assignments of MtRpsA280-438 which contains S1 domain and the flexible C-terminus. These NMR resonance assignments provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.  相似文献   
998.
Aims: Adenosine triphosphate (ATP) during the enzymatic production of glutathione is necessary. In this study, our aims were to investigate the reason for low glutathione production in Escherichia coli coupled with an ATP regeneration system and to develop a new strategy to improve the system. Methods and Results: Glutathione can be synthesized by enzymatic methods in the presence of ATP and three precursor amino acids (l ‐glutamic acid, l ‐cysteine and glycine). In this study, glutathione was produced from E. coli JM109 (pBV03) coupled with an ATP regeneration system, by using glycolytic pathway of Saccharomyces cerevisiae WSH2 as ATP regenerator from adenosine and glucose. In the coupled system, adenosine used for ATP regeneration by S. cerevisiae WSH2 was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03). As a consequence, S. cerevisiae WSH2 could not obtain enough adenosine for ATP regeneration in the glycolytic pathway in spite of consuming 400 mmol l?1 glucose within 1 h. By adding adenosine deaminase inhibitor to block the metabolism from adenosine to hypoxanthine, glutathione production (8·92 mmol l?1) enhanced 2·74‐fold in the coupled system. Conclusions: This unusual phenomenon that adenosine was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03) revealed that less glutathione production in the coupled ATP regeneration system was because of the poor efficiency of ATP generation. Significance and Impact of the Study: The results presented here provide a strategy to improve the efficiency of the coupled ATP regeneration system for enhancing glutathione production. The application potential can be microbial processes where ATP is needed.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号