首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5452篇
  免费   424篇
  国内免费   281篇
  6157篇
  2024年   6篇
  2023年   62篇
  2022年   141篇
  2021年   253篇
  2020年   178篇
  2019年   207篇
  2018年   188篇
  2017年   135篇
  2016年   212篇
  2015年   343篇
  2014年   385篇
  2013年   417篇
  2012年   510篇
  2011年   446篇
  2010年   271篇
  2009年   244篇
  2008年   269篇
  2007年   242篇
  2006年   192篇
  2005年   177篇
  2004年   168篇
  2003年   120篇
  2002年   108篇
  2001年   106篇
  2000年   93篇
  1999年   99篇
  1998年   40篇
  1997年   51篇
  1996年   41篇
  1995年   38篇
  1994年   30篇
  1993年   33篇
  1992年   41篇
  1991年   37篇
  1990年   46篇
  1989年   36篇
  1988年   23篇
  1987年   24篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1979年   14篇
  1978年   8篇
  1973年   9篇
  1972年   6篇
  1971年   9篇
  1968年   5篇
排序方式: 共有6157条查询结果,搜索用时 0 毫秒
31.
The main goal of this study was to investigate the long-term effect of daily 8-hour mild intermittent hypoxia (14-15% O2) on glucose tolerance and muscle morphology of Sprague-Dawley rats. The involvement of AMPK-PGC-1alpha-VEGF signaling pathways in the skeletal muscle was also determined during the first 8 hours of hypoxia. We found that mRNA levels of VEGF and PGC-1alpha were significantly increased above control after 8-h mild hypoxia without a change in AMPK phosphorylation. After 8 weeks of mild intermittent hypoxia treatment, plasma glucose and insulin levels in oral glucose tolerance test (OGTT), epididymal fat mass, and body weight were significantly lower compared to the control group. While soleus muscle weight was not changed, capillary and fiber densities in the hypoxia group were 33% and 35% above the control suggesting reorganization of muscle fibers. In conclusion, our data provide strong evidence that long-term mild intermittent hypoxia decreases the diffusion distance of glucose and insulin across muscle fibers, and decreases adiposity in rats. These changes may account for the improved glucose tolerance observed following the 8-week hypoxia treatment, and provides grounds for investigating the development of a mild non-pharmacological intervention in the treatment of obesity and type 2 diabetes.  相似文献   
32.
Three genes encoding putative protein disulfide isomerase (PDI) were isolated from the Haemaphysalis longicornis EST database and designed as HlPDI-1, HlPDI-2, and HlPDI-3. All three PDI genes contain two typical PDI active sites CXXC and encode putative 435, 499, and 488 amino acids, respectively. The recombinant proteins expressed in Escherichia coli all show PDI activities, and the activities were inhibited by a PDI-specific inhibitor, zinc bacitracin. Western blot analysis and real-time PCR revealed that three HlPDIs were present in all the developmental stages of the tick as well as in the midgut, salivary glands, ovary, hemolymph, and fatbody of adult female ticks, but the three genes were expressed at the highest level in the egg stage. HlPDI-1 is expressed primarily in the ovary and secondarily in the salivary glands. HlPDI-2 and HlPDI-3 are expressed primarily in the salivary gland, suggesting that the PDI genes are important for tick biology, especially for egg development, and that they play distinct roles in different tissues. Blood feeding induced significantly increased expression of HlPDI-1 and HlPDI-3 in both partially fed nymphs and adults. Babesia gibsoni-infected larval ticks expressed HlPDI-1 and HlPDI-3 2.0 and 4.0 times higher than uninfected normal larval ticks, respectively. The results indicate that HlPDI-1 and HlPDI-3 might be involved in tick blood feeding and Babesia parasite infection in ticks.  相似文献   
33.
Degradation of methanolic Wright's stain solutions was greatly diminished with the addition of diethylamine hydrochloride and dimethylamine hydrochloride as costabilizers. Precipitation problems were eliminated by the dual additives. The stabilized stain solutions demonstrated good staining performance on blood smears. Methods for predicting the shelf life using calculated analytical parameters are described. Using these methods, the shelf life of a control stain solution was predicted to be 0.7 years; predicted shelf life was more than tripled with the addition of diethylamine hydrochloride and was increased approximately 27 times with the addition of both diethylamine hydrochloride and dimethylamine hydrochloride.  相似文献   
34.
A nanobiocomposite film consisted of polypyrrole (PPy), functionalized multiwalled carbon nanotubes (cMWNTs), and glucose oxidase (GOx) were electrochemically synthesized by electrooxidation of 0.1M pyrrole in aqueous solution containing appropriate amounts of cMWNTs and GOx. Potentiostatic growth profiles indicate that the anionic cMWNTs is incorporated within the growing PPy-cMWNTs nanocomposite for maintaining its electrical neutrality. The morphology of the PPy-cMWNTs nanocomposite was characterized by scanning electron microscopy (SEM). The PPy-cMWNTs nanocomposite was deposited homogeneously onto glassy carbon electrode. The amperometric responses vary proportionately to the concentration of hydrogen peroxide at the PPy-cMWNTs nanocomposite modified electrode at an operating potential of 0.7V versus Ag/AgCl (3M). The results indicate that the electroanalytical PPy-cMWNTs-GOx nanobiocomposite film was highly sensitive and suitable for glucose biosensor based on GOx function. The GOx concentration within the PPy-cMWNTs-GOx nanobiocomposite and the film thickness are crucial for the performance of the glucose biosensor. The amperometric responses of the optimized PPy-cMWNTs-GOx glucose biosensor (1.5 mgmL(-1) GOx, 141 mCcm(-2) total charge) displayed a sensitivity of 95 nAmM(-1), a linear range up to 4mM, and a response time of about 8s.  相似文献   
35.
Evolutionary rates provide important information about the pattern and mechanism of evolution. Although the rate of gene sequence evolution has been well studied, the rate of gene expression evolution is poorly understood. In particular, it is unclear whether the gene expression level and tissue specificity influence the divergence of expression profiles between orthologous genes. Here we address this question using a microarray data set comprising the expression signals of 10,607 pairs of orthologous human and mouse genes from over 60 tissues per species. We show that the level of gene expression and the degree of tissue specificity are generally conserved between the human and mouse orthologs. The rate of gene expression profile change during evolution is negatively correlated with the level of gene expression, measured by either the average or the highest level among all tissues examined. This is analogous to the observation that the rate of gene (or protein) sequence evolution is negatively correlated with the gene expression level. The impacts of the degree of tissue specificity on the evolutionary rate of gene sequence and that of expression profile, however, are opposite. Highly tissue-specific genes tend to evolve rapidly at the gene sequence level but slowly at the expression profile level. Thus, different forces and selective constraints must underlie the evolution of gene sequence and that of gene expression.  相似文献   
36.
37.

Background

Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease.

Principal Findings

Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici.

Conclusions

Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems.  相似文献   
38.
Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large‐scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human‐induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human‐induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy–water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy–water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.  相似文献   
39.
The global insight into the relationships between miRNAs and their regulatory influences remains poorly understood. And most of complex diseases may be attributed to certain local areas of pathway (subpathway) instead of the entire pathway. Here, we reviewed the studies on miRNA regulations to pathways and constructed a bipartite miRNAs and subpathways network for systematic analyzing the miRNA regulatory influences to subpathways. We found that a small fraction of miRNAs were global regulators, environmental information processing pathways were preferentially regulated by miRNAs, and miRNAs had synergistic effect on regulating group of subpathways with similar function. Integrating the disease states of miRNAs, we also found that disease miRNAs regulated more subpathways than nondisease miRNAs, and for all miRNAs, the number of regulated subpathways was not in proportion to the number of the related diseases. Therefore, the study not only provided a global view on the relationships among disease, miRNA and subpathway, but also uncovered the function aspects of miRNA regulations and potential pathogenesis of complex diseases. A web server to query, visualize and download for all the data can be freely accessed at http://bioinfo.hrbmu.edu.cn/miR2Subpath.  相似文献   
40.
Chrysanthemum is one of the most important ornamental flowers in the world, and temperature has a significant influence on its field production. In the present study, differentially expressed proteins were investigated in the leaves of Dendranthema grandiflorum ‘Jinba’ under high temperature stress using label-free quantitative proteomics techniques. The expressed proteins were comparatively identified and analyzed. A total of 1,463 heat-related, differentially expressed proteins were successfully identified by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS), and 1,463 heat-related, differentially expressed proteins were successfully identified by mass spectrometry after a high temperature treatment. Among these, 701 proteins were upregulated and 762 proteins were downregulated. The in-depth bioinformatics analysis of these differentially expressed proteins revealed that these were involved in energy metabolism pathways, protein metabolism, and heat shock. In the present study, the investigators determined the changes in the levels of some proteins, and their expression at the protein and molecular levels in chrysanthemum to help reveal the mechanism of heat resistance in chrysanthemum. Furthermore, the present study elucidated some of the proteins correlated to heat resistance in chrysanthemum, and their expression changes at the protein and molecular levels to help reveal the mechanism of heat resistance in this flower species. These results provide a theoretical basis for the selection of new heat resistant varieties of chrysanthemum in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号