首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12142篇
  免费   1301篇
  国内免费   1415篇
  2024年   30篇
  2023年   110篇
  2022年   298篇
  2021年   495篇
  2020年   403篇
  2019年   502篇
  2018年   478篇
  2017年   420篇
  2016年   487篇
  2015年   698篇
  2014年   855篇
  2013年   946篇
  2012年   1132篇
  2011年   1015篇
  2010年   755篇
  2009年   628篇
  2008年   745篇
  2007年   697篇
  2006年   578篇
  2005年   530篇
  2004年   488篇
  2003年   488篇
  2002年   504篇
  2001年   266篇
  2000年   224篇
  1999年   205篇
  1998年   131篇
  1997年   115篇
  1996年   87篇
  1995年   67篇
  1994年   74篇
  1993年   42篇
  1992年   45篇
  1991年   58篇
  1990年   40篇
  1989年   35篇
  1988年   20篇
  1987年   29篇
  1986年   25篇
  1985年   15篇
  1984年   11篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1980年   6篇
  1978年   5篇
  1977年   5篇
  1975年   5篇
  1973年   4篇
  1971年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
951.
We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca2+ and Cl1‐ are largely supplied via diffusion from a high‐salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm?3 day?1 at ~400 mbsf. We also note the disappearance of δ‐Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g?1) and manganese (up to 20 μmol g?1). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate‐reducing pathways. The detection of the manganese‐ and iron‐reducer γ‐Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.  相似文献   
952.

Background

Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed.

Methods

A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function.

Results

Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference.

Conclusions

The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.
  相似文献   
953.

Background

Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown.

Methods

HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve.

Results

Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663–0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906–0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = ?0.124, P = 0.048) and lung adenocarcinoma (r = ?0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA.

Conclusions

Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.
  相似文献   
954.
Tert-butylhydroperoxide (tBHP) challenge caused an initial depletion of cellular reduced glutathione (GSH), which was followed by a gradual restoration of cellular GSH in AML12, H9c2, and differentiated PC12 cells. The time-dependent changes in cellular GSH induced by tBHP were monitored as a measure of GSH recovery capacity (GRC), of which glutathione reductase (GR)-mediated glutathione redox cycling and γ-glutamate cysteine ligase (GCL)-mediated GSH synthesis were found to play an essential role. While glutathione redox cycling sustained the GSH level during the initial tBHP-induced depletion, GSH synthesis restores the GSH level thereafter. The effects of (-)schisandrin B [(-)Sch B] and its analogs (Sch A and Sch C) on GRC were also examined in the cells. (-)Sch B and Sch C, but not Sch A, ameliorated the extent of tBHP-induced GSH depletion, indicative of enhanced glutathione redox cycling. However, the degree of restoration of GSH post-tBHP challenge was not affected or even decreased. Pretreatment with (-)Sch B and Sch C, but not Sch A, protected against oxidant injury in the cells. The (-)Sch B afforded cytoprotection was abolished by N,N'-bis(chloroethyl)-N-nitrosourea pretreatment suggesting the enhancement of glutathione redox cycling is crucially involved in the cytoprotection afforded by (-)Sch B against oxidative stress-induced cell injury.  相似文献   
955.
Claudins play an important role in tumor metastasis and in invasiveness of colorectal cancer (CRC). We have evaluated the relationship between CRC and expression of the claudin genes in Chinese patients with CRC. We measured CLDN1 and CLDN7 mRNA using quantitative PCR, and protein levels with immunohistochemistry in cancer tissues and adjacent normal tissue. Cancer tissues had significantly higher levels of CLDN1, and significantly lower levels of CLDN3, CLDN4, and CLDN7 than did normal tissue. CLDN3, CLDN4, and CLDN7 expression levels were higher in CRC of the protruded type than in CRC of the infiltrative type. Expression of CLDN7 correlated with lymph node metastasis. Stage N0 cancer tissues had higher levels of CLDN7 than did stages N1 and N2, suggesting that CLDN7 expression was closely related to the extent of lymph node metastasis. CLDN1 protein was upregulated, but CLDN7 protein was downregulated in cancer tissues when compared with expression in adjacent normal tissues. In conclusion, CLDN3, CLDN4, and CLDN7 were significantly downregulated, whereas CLDN1 was significantly upregulated in CRC. The altered expression of claudin genes may play a role in the initiation and development of CRC.  相似文献   
956.
957.
This study aims to evaluate the diagnostic utility of the combined near-infrared (NIR) autofluorescence (AF) and Raman spectroscopy for improving in vivo detection of gastric cancer at clinical gastroscopy. A rapid Raman endoscopic technique was employed for in vivo spectroscopic measurements of normal (n=1098) and cancer (n=140) gastric tissues from 81 gastric patients. The composite NIR AF and Raman spectra in the range of 800-1800 cm(-1) were analyzed using principal component analysis (PCA) and linear discriminant (LDA) to extract diagnostic information associated with distinctive spectroscopic processes of gastric malignancies. High quality in vivo composite NIR AF and Raman spectra can routinely be acquired from the gastric within 0.5s. The integrated intensity over the range of 800-1800 cm(-1) established the diagnostic implications (p=1.6E-14) of the change of NIR AF intensity associated with neoplastic transformation. PCA-LDA diagnostic modeling on the in vivo tissue NIR AF and Raman spectra acquired yielded a diagnostic accuracy of 92.2% (sensitivity of 97.9% and specificity of 91.5%) for identifying gastric cancer from normal tissue. The integration area under the receiver operating characteristic (ROC) curve using the combined NIR AF and Raman spectroscopy was 0.985, which is superior to either the Raman spectroscopy or NIR AF spectroscopy alone. This work demonstrates that the complementary Raman and NIR AF spectroscopy techniques can be integrated together for improving the in vivo diagnosis and detection of gastric cancer at endoscopy.  相似文献   
958.
Fifty-two endophytic fungi strains with different colony morphologies were isolated from stems, leaves and roots of Huperzia serrata (Thunb. ex Murray) Trevis. collected from Bawangling Reserve of Hainan Province in southern China. They were identified mainly based on rDNA ITS sequences and phylogenetic analysis. The results showed that all strains belonged to four classes, i.e. Sordariomycetes (92.31%), Dothideomycetes (3.85%), Pezizomycetes (1.92%) and Agaricomycetes (1.92%). Forty-seven strains were identified at the genus level, including Glomerella (Colletotrichum), Hypocrea (Trichoderma), Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus. As to the other five strains, three were identified at the order level and two at the family level, indicating that a great diversity of fungi taxa exists in H. serrata. Most isolated strains belonged to the genus of Glomerella (Colletotrichum) and Hypoxylon, twenty-one from Glomerella and its anamorph Colletotrichum (42.3% of total isolated strains) and ten from Hypoxylon (19.2% of total isolated strains). Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus were reported as endophytic fungi isolated from H. serrata for the first time.  相似文献   
959.
Huang L  Gan L  Zhao Q  Logan BE  Lu H  Chen G 《Bioresource technology》2011,102(19):8762-8768
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided.  相似文献   
960.
Yang XL  Song HL  Chen M  Cheng B 《Bioresource technology》2011,102(20):9490-9496
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号