首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115363篇
  免费   9240篇
  国内免费   10179篇
  134782篇
  2024年   270篇
  2023年   1498篇
  2022年   3431篇
  2021年   5757篇
  2020年   4011篇
  2019年   4962篇
  2018年   4686篇
  2017年   3466篇
  2016年   4861篇
  2015年   7074篇
  2014年   8366篇
  2013年   8857篇
  2012年   10670篇
  2011年   9594篇
  2010年   6020篇
  2009年   5380篇
  2008年   6220篇
  2007年   5610篇
  2006年   4842篇
  2005年   3867篇
  2004年   3320篇
  2003年   3085篇
  2002年   2660篇
  2001年   2063篇
  2000年   1860篇
  1999年   1813篇
  1998年   1132篇
  1997年   1074篇
  1996年   1000篇
  1995年   858篇
  1994年   829篇
  1993年   642篇
  1992年   839篇
  1991年   646篇
  1990年   490篇
  1989年   464篇
  1988年   367篇
  1987年   357篇
  1986年   284篇
  1985年   295篇
  1984年   166篇
  1983年   166篇
  1982年   108篇
  1981年   90篇
  1980年   62篇
  1979年   78篇
  1977年   62篇
  1975年   58篇
  1974年   52篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
Resveratrol (3,4',5-trihydroxystilbene), a polyphenolic compound found in mulberries, grapes, and red wine, has received considerable attention because of its apparent protective effects against various degenerative diseases due to its potential antioxidant activities. However, direct evidence for the superoxide-scavenging capacity of resveratrol is lacking in literature. In this study, electron paramagnetic resonance spectroscopy in combination with 5-(diethoxyphosphoryl)-5-methylpyrroline-N-oxide (DEPMPO)-spin trapping technique was utilized to determine the ability of resveratrol in scavenging superoxide anions generated from both potassium superoxide and the xanthine oxidase/xanthine system. We have demonstrated here for the first time that the presence of resveratrol resulted in decreased formation of DEPMPO-superoxide adduct (DEPMPO-OOH) in both the potassium superoxide and xanthine oxidase/xanthine systems, indicating that resveratrol could directly scavenge superoxide anions. The inhibition of DEPMPO-OOH in the xanthine oxidase/xanthine system, however, was found to be much potent as compared to that observed in potassium superoxide system. It was further shown that resveratrol could also directly inhibit xanthine oxidase activity as assessed by oxygen consumption and formation of uric acid. Taken together, the dual role of resveratrol in directly scavenging superoxide and inhibiting its generation via xanthine oxidase reported in this study may explain, at least in part, the protective role of this compound against oxidative injury in various disease processes.  相似文献   
202.
203.
Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.  相似文献   
204.
Here we describe an advanced polymerase chain reaction (PCR) technique, the compatible ends ligation inverse PCR (CELI-PCR) for chromosome walking. In CELI-PCR, several restriction enzymes, which produce compatible cohesive ends, were used to digest target DNA simultaneously or sequentially to produce DNA fragments of suitable size. DNA fragments were then easily circularized and PCR amplification could be carried out efficiently. The previous limitations of inverse PCR were overcome, such as unavailable restriction sites, poor template DNA circularization, and low amplification efficiency. Therefore, successive chromosome walking was performed successfully. Our work, isolating a 11,395-bp fragment from Gossypium hirsutum, was presented as an example to describe how CELI-PCR was carried out.  相似文献   
205.
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions.  相似文献   
206.
207.
Gao  Lei  Yuan  Zihao  Li  Yunfeng  Ma  Zhen 《Functional & integrative genomics》2022,22(3):317-330
Functional & Integrative Genomics - DNAJ proteins function as co-chaperones of HSP70 and play key roles in cell physiology to promote protein folding and degradation, especially under...  相似文献   
208.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   
209.
Hu ZA  Tan YL  Luo J  Li HD  Li XC  Yu ZP 《生理学报》2004,56(1):89-94
既往研究发现,神经细胞粘附分子(neural cell adhesion molecules,NCAM)对海马CA1区突触传递长时程增强(longterm potentiation,LTP)的诱导和维持极为关键。本文采用原位杂交法和Western blot法,观察了大鼠海马腑片LTP诱导和维持过程中NCAM mRNA和蛋白水平的动态变化过程。结果显示,强直刺激诱发fEPSP斜率升高10 min时,海马CA1区NCAM mRNA染色阳性神经元数量显著增加(76.6±11.5个),NCAM蛋白水平亦明显升高(7.190±0.64任意单位/50μg蛋白)。强直刺激诱发fEPSP斜率升高1 h时,NCAM mRNA染色阳性神经元数量为73.3±14.0个,NCAM蛋白量为9.031±0.71任意单位/50 μg蛋白;与强直刺激后10 min比较,NCAM mRNA表达无显著变化,而NCAM蛋白水平变化明显。NMDA受体特异阻断剂AP-5在损害LTP的同时,显著抑制NCAM mRNA和蛋白的增加。实验结果表明,在大鼠海马LTP诱导和维持过程中,NCAM mRNA增强的表达相对稳定,而NCAM蛋白水平呈现先低后高的变化。  相似文献   
210.
细胞自动机模型(Cellular Automata Model,简称CA模型)是一种能够表现系统复杂行为的模拟方法,适于研究植物群落时空动态过程.本文利用CA模型,模拟具有化感作用的外来种入侵原有物种所构成植被的过程.模型由产生化感物质的外来种和两个对化感物质敏感性不同的本地种组合成不同类型的群落,利用化感物质作用下受体物种生物活性响应模型及种子扩散负指数分布模型,模拟外来杂草和本地种分布格局的时空动态变化.结果表明,外来种可成功地完全入侵由两个对化感物质敏感的本地种构成的群落空间,但对于由对化感物质敏感的一个本地种及对化感物质具有抗性的另一个本地种构成的群落,外来种只能够与本地种共存.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号