首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   12篇
  2022年   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   10篇
  2008年   8篇
  2007年   18篇
  2006年   12篇
  2005年   15篇
  2004年   21篇
  2003年   14篇
  2002年   7篇
  2001年   14篇
  2000年   27篇
  1999年   14篇
  1998年   5篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
排序方式: 共有315条查询结果,搜索用时 171 毫秒
31.
There is no methodology for the estimation of the dynamic features of large-molecular-weight RNAs in homogeneous physiological media. In this report, a luminescence anisotropy-based method using a long-lifetime luminescent oligonucleotide probe for the estimation of the dynamic features of large-molecular-weight RNA is described. As a luminescent probe, Ru(II) complex-labeled oligonucleotides, which have a complementary sequence to the single-stranded regions of Escherichia coli 16S rRNA, were synthesized. After the hybridization of the probe to single-stranded regions of 16S rRNA, the segmental motions of the regions were evaluated by time-resolved luminescence anisotropy analysis. In 16S rRNA, the L2 site (323-332 nt) was found to be the most flexible among the seven sites chosen. From a comparison between the hybridization kinetics of oligonucleotides to these single-stranded regions and the rotational correlation times, it was suggested that the flexibility of the single-stranded region was closely correlated with the hybridization kinetics. Furthermore, results of the luminescence lifetime measurement and luminescence quenching experiments suggested that the highly flexible region was located on the surface of the 16S rRNA and that the less flexible region was located in the depths of 16S rRNA.  相似文献   
32.
Placental leucine aminopeptidase (P-LAP), a type-II transmembrane protease responsible for oxytocin degradation during pregnancy, is converted to a soluble form through proteolytic cleavage. The goal of this study was to determine the nature of the P-LAP secretase activity. The hydroxamic acid-based metalloprotease inhibitors GM6001 and ONO-4817 as well as the TNF-alpha protease inhibitor-2 (TAPI-2) reduced P-LAP release, while tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, which are matrix metalloproteinase inhibitors, had no effect on P-LAP release in Chinese hamster ovary (CHO) cells stably overexpressing P-LAP, thus indicating possible involvement of ADAM (a disintegrin and metalloproteinase) members in P-LAP shedding. Furthermore, overexpression of ADAM9 and ADAM12 increased P-LAP release in P-LAP-CHO transfectants. Immunohistochemical analysis in human placenta demonstrated strong expression of ADAM12 in syncytiotrophoblasts, while little expression of ADAM9 was detected throughout the placenta. Our results suggest ADAM members, at least including ADAM12, are involved in P-LAP shedding in human placenta.  相似文献   
33.
The mouse embryonal carcinoma cell line ATDC5 provides an excellent model system for chondrogenesis in vitro. To understand better the molecular mechanisms of endochondral bone formation, we investigated gene expression profiles during the differentiation course of ATDC5 cells, using an in-house microarray harboring full-length-enriched cDNAs. For 28 days following chondrogenic induction, 507 genes were up- or down-regulated at least 1.5-fold. These genes were classified into five clusters based on their expression patterns. Genes for growth factor and cytokine pathways were significantly enriched in the cluster characterized by increases in expression during late stages of chondrocyte differentiation. mRNAs for decorin and osteoglycin, which have been shown to bind to transforming growth factors-beta and bone morphogenetic proteins, respectively, were found in this cluster and were detected in hypertrophic chondrocytes of developing mouse bones by in situ hybridization analysis. Taken together with assigned functions of individual genes in the cluster, interdigitated interaction between a number of intercellular signaling molecules is likely to take place in the late chondrogenic stage for autocrine and paracrine regulation among chondrocytes, as well as for chemoattraction and stimulation of progenitor cells of other lineages.  相似文献   
34.
The septins are GTP-binding, filament-forming proteins that are involved in cytokinesis and other processes. In the yeast Saccharomyces cerevisiae, the septins are recruited to the presumptive bud site at the cell cortex, where they form a ring through which the bud emerges. We report here that in wild-type cells, the septins typically become detectable in the vicinity of the bud site several minutes before ring formation, but the ring itself is the first distinct structure that forms. Septin recruitment depends on activated Cdc42p but not on the normal pathway for bud-site selection. Recruitment occurs in the absence of F-actin, but ring formation is delayed. Mutant phenotypes and suppression data suggest that the Cdc42p effectors Gic1p and Gic2p, previously implicated in polarization of the actin cytoskeleton, also function in septin recruitment. Two-hybrid, in vitro protein binding, and coimmunoprecipitation data indicate that this role involves a direct interaction of the Gic proteins with the septin Cdc12p.  相似文献   
35.
A series of novel nikkomycin analogue inhibitors of the chitin synthase of fungal cell wall was synthesized and evaluated for their inhibitory activities. Among them, the compound having a phenanthrene group at the terminal amino acid was found to possess strong anti-chitin synthase activity.  相似文献   
36.
J. Neurochem. (2012) 122, 1047-1053. ABSTRACT: Retinitis pigmentosa is a group of diseases in which one of hundreds of mutations causes death of rod photoreceptor cells and then cones gradually die from oxidative damage. As different mutations cause rod cell death by different mechanisms, mutation-specific treatments are needed. Another approach is to use a neurotrophic factor to promote photoreceptor survival regardless of the mechanism of cell death, and previous studies have demonstrated encouraging short-term results with gene transfer of glial cell line-derived neurotrophic factor (GDNF). We generated rd10 mice with doxycycline-inducible expression of GDNF in photoreceptors (Tet/IRBP/GDNF-rd10 mice) or retinal pigmented epithelial cells (Tet/VMD2/GDNF-rd10 mice). In doxycycline-treated Tet/IRBP/GDNF-rd10 mice, there was a 9.3?×?10(4) -fold increase in Gdnf mRNA at P35 and although it decreased over time, it was still increased by 9.4?×?10(3) -fold at P70. Gdnf mRNA was increased 4.5?×?10(2) -fold in doxycycline-treated Tet/VMD2/GDMF-rd10 mice at P35 and was not significantly decreased at P70. GDNF protein levels were increased about 2.3-fold at P35 and 30% at P70 in Tet/IRBP/GDNF-rd10 mice, and in Tet/VMD2/GDNF-rd10 mice they were increased 30% at P35 and not significantly increased at P70. Despite the difference in expression, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant increases in outer nuclear layer thickness and mean photopic and scotopic ERG b-wave amplitudes compared with rd10 mice at P35 which decreased, but was still significant at P70. Compared with rd10 mice, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant improvements in cone density at P50 that decreased, but were still significant at P70. These data indicate that despite a large difference in expression of GDNF, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 provide comparable slowing of photoreceptor degeneration, but cannot stop the degeneration.  相似文献   
37.

Background

The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.

Methods

Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.

Results

Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.

Conclusions

Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.  相似文献   
38.

Background

Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits.

Methods

We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire.

Results

We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (χ2 = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (χ2 = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F1,178 = 4.08, p = 0.045), particularly the interpersonal factor (F1,178 = 5.85, p = 0.017).

Discussion

These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia.  相似文献   
39.
Background aimsMesenchymal stromal cells (MSC) can be isolated from the perivascular connective tissue of umbilical cords, called Wharton's jelly. These human umbilical cord perivascular cells (HUCPVC) might provide therapeutic benefits when treating skeletal or cutaneous malformations in neonatal patients.MethodsHUCPVC were isolated, and their proliferation rate, marker expression and multilineage differentiation potential determined. HUCPVC or their conditioned medium (HUCPVC-CM) was injected into the excisional wound of a mouse splinted-wound model. The effects of the treatment on wound closure were examined by morphohistochemical and gene expression analyses.ResultsHUCPVC expressed typical MSC markers and could differentiate into osteoblastic and adipogenic lineages. HUCPVC transplanted into the mouse wound accelerated wound closure. Immunohistologic analysis showed that the HUCPVC accelerated wound healing by enhancing collagen deposition and angiogenesis via paracrine mechanisms. Furthermore, treatment with HUCPVC-CM alone significantly enhanced wound closure. HUCPVC-CM increased the number of anti-inflammatory M2 macrophages expressing resistin-like molecule (RELM)-α/CD11b and promoted neovessel maturation. Quantitative polymerase chain reaction (PCR) analysis showed that HUCPVC-CM increased the expression of tissue-repairing cytokines interleukin (IL)-10, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-1 and angiopoietin-1 at the healing wound.ConclusionsOur results show that HUCPVC promotes wound healing via multifaceted paracrine mechanisms. Together with their ability to differentiate into the osteogenic linage, HUCPVC may provide significant therapeutic benefits for treating wounds in neonatal patients.  相似文献   
40.
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications – decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanims of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Aβ- and noxious C- or Aδ-fibers to influence the molecular mechanisms of allodynia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号