首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   8篇
  2023年   2篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   13篇
  2005年   2篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   6篇
  1978年   1篇
  1977年   1篇
  1976年   5篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1964年   2篇
  1962年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
21.
The bacteria Helicobacter pylori is a major human pathogen that infects over half of the world's population. Infection initiates a series of changes in the gastric mucosa, beginning with atrophic gastritis and leading in some patients to peptic ulcer disease, mucosa-associated lymphomas, and gastric adenocarcinoma. Although this cascade of events clearly occurs, little is known about the role of the host immune response in disease progression. We have utilized the C57BL/6 Helicobacter felis mouse model to critically analyze the role of the adaptive immune response in the development of Helicobacter-associated gastric pathology. Infection of B and T cell-deficient RAG-1-/- mice or T cell-deficient TCRbetadelta-/- mice with H. felis resulted in high levels of colonization, but no detectable gastric pathology. Conversely, infection of B cell-deficient microMT mice resulted in severe gastric alterations identical with those seen in immunocompetent C57BL/6-infected mice, including gastric mucosal hyperplasia and intestinal metaplasia. These results demonstrate that the host T cell response is a critical mediator of Helicobacter-associated gastric pathology, and that B cells and their secreted Abs are not the effectors of the immune-mediated gastric pathology seen after H. felis infection. These results indicate that in addition to specific Helicobacter virulence factors, the host immune response is an important determinant of Helicobacter-associated disease.  相似文献   
22.
Due to rapid advances in genetic engineering, small rodents have become the preferred subjects in many disciplines of biomedical research. In studies of chronic CNS disorders, there is an increasing demand for murine models with high validity at the behavioral level. However, multiple pathogenic mechanisms and complex functional deficits often impose challenges to reliably measure and interpret behavior of chronically sick mice. Therefore, the assessment of peripheral pathology and a behavioral profile at several time points using a battery of tests are required. Video-tracking, behavioral spectroscopy, and remote acquisition of physiological measures are emerging technologies that allow for comprehensive, accurate, and unbiased behavioral analysis in a home-base-like setting. This report describes a refined phenotyping protocol, which includes a custom-made monitoring apparatus (Integrated Behavioral Station, INBEST) that focuses on prolonged measurements of basic functional outputs, such as spontaneous activity, food/water intake and motivated behavior in a relatively stress-free environment. Technical and conceptual improvements in INBEST design may further promote reproducibility and standardization of behavioral studies.  相似文献   
23.
The dual effect of the ubiquitous inflammatory cytokine transforming growth factor beta1 (TGF beta) on cellular proliferation and tumor metastasis is intriguing but complex. In epithelial cell- and neural cell-derived tumors, TGF beta serves as a growth inhibitor at the beginning of tumor development but later becomes a growth accelerator for transformed tumors. The somatostatin (SST) signaling pathway is a well-established antiproliferation signal, and in this report, we explore the interplay between the SST and TGF beta signaling pathways in the human neuroendocrine tumor cell line BON. We defined the SST signaling pathway as a determinant for neuroendocrine tumor BON cells in responding to TGF beta as a growth inhibitor. We also determined that TGF beta induces the production of SST and potentially activates the negative growth autocrine loop of SST, which leads to the downstream induction of multiple growth inhibitory effectors: protein tyrosine phosphatases (i.e., SHPTP1 and SHPTP2), p21(Waf1/Cip1), and p27(Kip1). Concurrently, TGF beta down-regulates the growth accelerator c-Myc protein and, collectively, they establish a firm antiproliferation effect on BON cells. Additionally, any disruption in the activation of either the TGF beta or SST signaling pathway in BON leads to "reversible" neuroendocrine-mesenchymal transition, which is characterized by the loss of neuroendocrine markers (i.e., chromogranin A and PGP 9.5), as well as the altered expression of mesenchymal proteins (i.e., elevated vimentin and Twist and decreased E-cadherin), which has previously been associated with elevated metastatic potential. In summary, TGF beta-dependent growth inhibition and differentiation is mediated by the SST signaling pathway. Therefore, any disruption of this TGF beta-SST connection allows BON cells to respond to TGF beta as a growth accelerator instead of a growth suppressor. This model can potentially apply to other cell types that exhibit a similar interaction of these pathways.  相似文献   
24.
25.
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and caspase-like) of the 26S proteasome were examined in VSMC. At baseline, caspase-like activity was approximately 3.5-fold greater than chymotrypsin- and trypsin-like activities. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited all three catalytically active sites in a time- and concentration-dependent manner (P < 0.05). Caspase-like activity was inhibited to a greater degree (77.2% P < 0.05). cGMP and cAMP analogs and inhibitors had no statistically significant effect on basal or NO-mediated inhibition of proteasome activity. Dithiothreitol, a reducing agent, prevented and reversed the NO-mediated inhibition of the 26S proteasome. Nitroso-cysteine analysis following S-nitrosoglutathione exposure revealed that the 20S catalytic core of the 26S proteasome contains 10 cysteines which were S-nitrosylated by NO. Evaluation of 26S proteasome subunit protein expression revealed differential regulation of the α and β subunits in VSMC following exposure to NO. Finally, immunohistochemical analysis of subunit expression revealed distinct intracellular localization of the 26S proteasomal subunits at baseline and confirmed upregulation of distinct subunits following NO exposure. In conclusion, NO reversibly inhibits the catalytic activity of the 26S proteasome through S-nitrosylation and differentially regulates proteasomal subunit expression. This may be one mechanism by which NO exerts its effects on the cell cycle and inhibits cellular proliferation in the vasculature.  相似文献   
26.
27.
28.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   
29.
The histidine-containing phosphocarrier protein (HPr) from Bacillus subtilis has been crystallized. Two of the site-directed mutants aimed at probing function produce crystals suitable for X-ray studies. The mutant in which His15 is substituted by an alanyl residue crystallizes from ammonium sulfate solution in space group P3(1)21 or P3(2)21, with unit cell dimensions: a = b = 47.3 A; c = 61.5 A. These crystals diffract to at least 1.8 A resolution. The mutant in which Ser46 is substituted by an aspartyl residue crystallizes from polyethylene glycol 4000 solution in space group P2(1), with unit cell dimensions: a = 49.4 A; b = 25.6 A; c = 60.3 A; beta = 109 degrees. These crystals diffract to at least 2.0 A resolution.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号