首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1994篇
  免费   140篇
  国内免费   1篇
  2022年   8篇
  2021年   13篇
  2019年   12篇
  2018年   17篇
  2017年   15篇
  2016年   28篇
  2015年   54篇
  2014年   56篇
  2013年   103篇
  2012年   83篇
  2011年   89篇
  2010年   51篇
  2009年   48篇
  2008年   89篇
  2007年   108篇
  2006年   99篇
  2005年   91篇
  2004年   107篇
  2003年   95篇
  2002年   89篇
  2001年   83篇
  2000年   70篇
  1999年   64篇
  1998年   22篇
  1997年   23篇
  1996年   23篇
  1995年   24篇
  1994年   16篇
  1993年   10篇
  1992年   62篇
  1991年   47篇
  1990年   46篇
  1989年   35篇
  1988年   36篇
  1987年   30篇
  1986年   35篇
  1985年   30篇
  1984年   24篇
  1983年   17篇
  1982年   19篇
  1981年   13篇
  1980年   16篇
  1979年   20篇
  1978年   18篇
  1977年   15篇
  1976年   8篇
  1975年   7篇
  1974年   11篇
  1973年   7篇
  1970年   7篇
排序方式: 共有2135条查询结果,搜索用时 437 毫秒
991.
New orally bioavailable 5-(thiophen-2-yl)-substituted 2-aminobenzamide-series histone deacetylase inhibitors were synthesized. These compounds possess a morpholine or piperadine-derived moiety as an aqueous soluble functional group. Among them, 8b, having a 4-ethyl-2,3-dioxopiperazine-1-carboxamide group as a surface recognition domain, showed promising inhibitory activities against HCT116 cell growth and HDAC1/2. Notably, unlike MS-275, this compound did not induce apoptosis in the cell cycle tests. We therefore conducted antitumor tests of 8b and MS-275 against HCT116 cell xenografts in nude mice. Compound 8b reduced the volume of tumor mass to T/C: 60% and 47% at 45 and 80mg/kg over 16days, respectively. These values were comparable to the rate (T/C: 51% at 45mg/kg) for MS-275. Furthermore, 8b, at neither 45 nor 80mg/kg, induced the weight loss which was observed in the mice given MS-275 at 45mg/kg.  相似文献   
992.
The paranodal junction is a specialized axon-glia contact zone that is important for normal neuronal activity and behavioral locomotor function in the central nervous system (CNS). Histological examination has been the only method for detecting pathological paranodal junction conditions. Recently, diffusion tensor MRI (DTI) has been used to detect microstructural changes in various CNS diseases. This study was conducted to determine whether MRI and DTI could detect structural changes in the paranodal junctions of the spinal cord in cerebroside sulfotransferase knock-out (CST-KO) mice. Here, we showed that high-resolution MRI and DTI characteristics can reflect paranodal junction failure in CST-KO mice. We found significantly lower T1 times and significantly higher T2 times in the spinal cord MRIs of CST-KO mice as compared to wild-type (WT) mice. Spinal cord DTI showed significantly lower axial diffusivity and significantly higher radial diffusivity in CST-KO mice as compared to WT mice. In contrast, the histological differences in the paranodal junctions of WT and CST-KO mice were so subtle that electron microscopy or immunohistological analyses were necessary to detect them. We also measured gait disturbance in the CST-KO mice, and determined the conduction latency by electrophysiology. These findings demonstrate the potential of using MRI and DTI to evaluate white matter disorders that involve paranodal junction failure.  相似文献   
993.
Human BST-2 (hBST-2) has been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. Orthologues of BST-2 have been identified in several species, including human, monkeys, pig, mouse, cat and sheep. All have been reported to possess antiviral activity. Duplication of the BST-2 gene has been observed in sheep and the paralogues are referred to as ovine BST-2A and BST2-B, although only a single gene corresponding to BST-2 has been identified in most species. In this study, we identified three isoforms of bovine BST-2, named bBST-2A1, bBST-2A2 and bBST-2B, in bovine cells treated with type I interferon, but not in untreated cells. Both bBST-2A1 and bBST-2A2 are posttranslationally modified by N-linked glycosylation and a GPI-anchor as well as hBST-2, while bBST-2B has neither of these modifications. Exogenous expression of bBST-2A1 or bBST-2A2 markedly reduced the production of bovine leukemia virus and vesicular stomatitis virus from cells, while the antiviral activity of bBST-2B was much weaker than those of bBST-2A1 and bBST-2A2. Our data suggest that bBST-2A1 and bBST-2A2 function as part of IFN-induced innate immunity against virus infection. On the other hand, bBST-2B may have a different physiological function from bBST-2A1 and bBST-2A2.  相似文献   
994.
In order to develop potential radiolabelled probes for imaging estrogen receptor (ER) positive tumours, we have synthesized and characterized a series of novel 7α-alkoxy-17α-(4'-iodophenylethynyl)estra-1,3,5(10)-triene-3,17β-diols and 7α-alkoxy-17α-(4'-fluorophenylethynyl)estra-1,3,5(10)-triene-3,17β-diols. The fluoro-substituted compounds showed a higher ER binding affinity than the corresponding iodo-derivatives, where 7α-methoxy- and 17α-(4'-fluorophenylethynyl)estra-1,3,5(10)-triene-3,17β-diol showed the highest ER binding affinities (RBA=80.9% and 78.9%, respectively), among the halophenylethynyl compounds studied and should be further explored as potential PET biomarkers for imaging of ER expressing tumours.  相似文献   
995.
Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions.  相似文献   
996.
A cyaA-deficient Escherichia coli strain was transformed by a plasmid carrying the gene for BsPAC, a photoactivated adenylyl cyclase identified from a Beggiatoa sp., and was subjected to an antibiotic susceptibility assay and biofilm formation assay under a light or dark condition. Cells expressing BsPAC that were incubated under blue light (470 nm) were more susceptible to fosfomycin, nalidixic acid and streptomycin than were cells incubated in the dark. Cells expressing BsPAC formed more biofilms when incubated under the light than did cells cultured in the dark. We concluded from these observations that it is possible to determine the importance of cAMP in antibiotic susceptibility and biofilm formation of E. coli by photomanipulating the cellular cAMP level by the use of BsPAC. A site-directed mutant of BsPAC in which Tyr7 was replaced by Phe functioned even in the dark, indicating that Tyr7 plays an important role in photoactivation of BsPAC. Results of mutational analysis of BsPAC should contribute to an understanding of the molecular basis for photoactivation of the protein.  相似文献   
997.
Recent studies have demonstrated that magnetic stimulation (MS) can induce cellular responses such as Ca2+ influx into the cultured neurons and glia, leading to increased intracellular phosphorylation. We have demonstrated previously that MS reduces rat neuropathic pain associated with the prevention of neuronal degeneration. Thus, we aimed to elucidate the actions of MS in relation to modulation of spinal neuron–glia and the descending inhibitory system in chronic pain. The male SD rats intrathecally implanted with catheters were subjected to sciatic nerve ligation (CCI). MS is a low power apparatus characterized by two different frequencies, 2 KHz and 83 MHz. Rats were given MS to the skin (injured sciatic nerve) for 10 min from the seventh day after CCI. The paw withdrawal latency (PWL) evoked by thermal stimuli was measured for 14 days after CCI. Immunohistochemistry for Iba-1 or GFAP was performed after 4% paraformaldehyde fixation (microscopic analysis). We employed microdialysis for measuring CSF 5-HIAA as a reflection of 5-HT release by MS stimulation. Following CCI, rats showed a decrease in PWL after CCI, and the decrease continued until the 14th day. With MS treatment, the decrease in PWL was reduced during the 10–14 day after CCI. Injection of JNK-1 inhibitors on the 14th day antagonized the analgesic effect of MS. MS also eliminated the CCI-induced decrease in GFAP immunoreactivity. Moreover, MS evoked spinal 5-HT release reflected by increase in spinal 5-HIAA level. Thus, we demonstrate that a novel magnetic stimulator used cutaneously can ameliorate chronic pain by not only preventing abnormal spinal neuron–glia interaction, but also through the activation of the supra-spinal descending inhibitory system.  相似文献   
998.
Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1β, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines.  相似文献   
999.
Exocytosis of Weibel-Palade bodies (WPB) represents a distinct response of endothelial cells to stressors, and local release of WPB contents leads to systemic escalation of this response. We synthesized a glycine-(Nα-Et)lysine-proline-arginine (ITF 1697) peptide that has a potential to inhibit exocytosis of WPB and protect microcirculation. Here, we confirmed an inhibitory effect of ITF 1697 using intravital videoimaging and point-tracking of individual organelles. In an in vivo study, mice were implanted with Alzet osmotic pumps (10 μg ITF 1697·kg(-1)·min(-1) at volume of 1 μl/h) and subjected to renal ischemia (IRI). IRI resulted in marked renal injury and elevation of serum creatinine in mice treated with a vehicle. In contrast, renal injury and elevation of creatinine were significantly ameliorated in mice subjected to IRI and receiving ITF 1697. ITF 1697 prevented a systemic response to IRI: a significant surge in the levels of eotaxin and IL-8 (KC; both components of WPB), IL-1α, IL-1β, and RANTES was all prevented or blunted by the administration of ITF 1697, whereas the levels of an anti-inflammatory, IL-10, and macrophage inflammatory protein-1α were upregulated in ITF 1697-treated animals. En face staining of aortic endothelial cells showed that WPB were depleted after 40-180 min post-IRI, and this was significantly blunted in aortic preparations obtained from mice treated with ITF 1697. WPB exocytosis contributed to IRI-associated mobilization of endothelial progenitor cells and hematopoietic stem cells, and ITF 1697 blunted their mobilization. Unexpectedly, 1 mo after IRI, mice treated with ITF 1697 showed a significantly more pronounced degree of scarring than nontreated animals. In conclusion, 1) application of ITF 1697 inhibits exocytosis of WPB and IRI; 2) the systemic inflammatory response of IRI is in part due to the exocytosis of WPB and its blockade blunts it; and 3) ITF 1697 improves short-term renal function after IRI, but not the long-term fibrotic complications.  相似文献   
1000.
Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced.Each neuron typically receives 1000–10,000 synaptic inputs and sends information to an axon, which branches to produce a similar number of synaptic outputs. Most excitatory postsynaptic terminals are associated with dendritic spines, small protrusions emanating from the dendritic surface (Nimchinsky et al. 2002; Alvarez and Sabatini 2007). Each spine has a volume of ∼0.1 femtoliter, and connects to the parent dendrite through a narrow neck, which acts as a diffusion barrier and compartmentalizes biochemical reactions. Ca2+ influx into spines initiates a cascade of biochemical signals leading to various forms of synaptic plasticity including long-term potentiation (LTP).Because LTP in hippocampal CA1 pyramidal neurons is a cellular mechanism that may underlie long-term memory formation, the signal transduction underlying LTP has been extensively studied by pharmacological and genetic methods (Bliss and Collingridge 1993; Derkach et al. 2007). It is now well established that LTP is induced by Ca2+ influx into dendritic spines through NMDA-type glutamate receptors (NMDARs), which induces the insertion of AMPA-type glutamate receptors (AMPARs) into the synapse, thereby increasing the sensitivity of the postsynaptic terminal to glutamate (Derkach et al. 2007; Kessels and Malinow 2009). An increase of release probability during LTP has also been reported (Enoki et al. 2009), and thus both pre- and postsynaptic mechanisms may contribute to LTP (Lisman and Raghavachari 2006).Manipulations of signal transduction using specific pharmacological inhibitors or genetic perturbations have identified many signaling pathways that connect Ca2+ to LTP induction. For example, LTP requires the activation of many signaling proteins, including Ca2+/calmodulin-dependent kinase II (CaMKII), extracellular signal-related kinase (ERK), Phoshoinositide 3 kinase (PI3K), protein kinase A and C, and GTPases such as Ras, Rab, and Rho (Kennedy et al. 2005). The list is continually growing, and the hundreds of implicated proteins form a complex signaling network whose contribution to LTP is still unclear (Bromberg et al. 2008).Signaling dynamics in neurons have traditionally been measured using biochemical analyses (Bromberg et al. 2008). However, the spatiotemporal resolution of conventional biochemistry is limited, restricting analysis to the time scale of many minutes and requiring the homogenization of tissue containing millions of synapses and other cellular elements. Furthermore, resolving synaptically induced changes in signaling by biochemical analysis typically requires stimulating many synapses at the same time, which may produce unintended effects, for instance, excitotoxicity or homeostatic plasticity.The size of dendritic spines is similar to the resolution of an optical microscope, permitting the optical analysis of biochemical signaling in each dendritic spine (Svoboda and Yasuda 2006). In particular, the advent of two-photon-based FRET techniques and the development of appropriate fluorescent reporters of specific biochemical reactions (see below) have provided readouts for signal transduction with high spatiotemporal resolution in live brain tissue (Svoboda and Yasuda 2006; Yasuda 2006). This has provided detailed information about the dynamics of signal transduction in spines and dendrites, and insights into the molecular mechanisms of synaptic plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号