首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1110篇
  免费   62篇
  国内免费   1篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   9篇
  2016年   20篇
  2015年   30篇
  2014年   30篇
  2013年   66篇
  2012年   63篇
  2011年   71篇
  2010年   39篇
  2009年   31篇
  2008年   62篇
  2007年   52篇
  2006年   34篇
  2005年   54篇
  2004年   44篇
  2003年   42篇
  2002年   33篇
  2001年   27篇
  2000年   40篇
  1999年   31篇
  1998年   18篇
  1997年   16篇
  1996年   14篇
  1995年   17篇
  1994年   8篇
  1993年   12篇
  1992年   18篇
  1991年   20篇
  1990年   24篇
  1989年   18篇
  1988年   24篇
  1987年   22篇
  1986年   15篇
  1985年   19篇
  1984年   10篇
  1983年   5篇
  1982年   10篇
  1981年   18篇
  1980年   7篇
  1979年   10篇
  1978年   12篇
  1977年   9篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
排序方式: 共有1173条查询结果,搜索用时 15 毫秒
41.
Mutagenic compounds isolated from pyrolysates of tryptophan, glutamic acid and globulin were broken down by myeloperoxidase and hydrogen peroxide with loss of their mutagenicity toward Salmonella typhimurium TA98. Lactoperoxidase and horseradish peroxidase were as effective as myeloperoxidase in degradation of the mutagens.  相似文献   
42.
A Ca2+-binding protein (TCBP), which was isolated from Tetrahymena pyriformis, enhanced about 20-fold particulate-bound guanylate cyclase activity in Tetrahymena cells in the presence of a low concentration of Ca2+, while the adenylate cyclase activity was not increased. The enhancement was eliminated by ethylene glycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. The enzyme activity was not stimulated by rabbit skeletal muscle troponin-C, the Ca2+-binding component of troponin, or other some proteins. In the presence of TCBP, stimulating effect of calcium ion on the enzyme activity was observed within the range of pCa 6.0 to 4.6, and was immediate and reversible.  相似文献   
43.
Evidence is presented for the selective breakdown of altered tomato β-fructofuranosidase molecules by a neutral protease from Bacillus subtilis.  相似文献   
44.
45.
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.  相似文献   
46.
Photosynthetic organisms have diversified light-harvesting complexes (LHCs) to collect solar energy efficiently, leading to an acquisition of their ecological niches. Herein we report on biochemical and spectroscopic characterizations of fucoxanthin chlorophyll a/c-binding protein (FCP) complexes isolated from a marine pinguiophyte Glossomastix chrysoplasta. The pinguiophyte FCP showed one subunit band in SDS-PAGE and one protein-complex band with a molecular weight at around 66 kDa in clear-native PAGE. By HPLC analysis, the FCP possesses chlorophylls a and c, fucoxanthin, and violaxanthin. To clarify excitation-energy-relaxation processes in the FCP, we measured time-resolved fluorescence spectra at 77 K of the FCP adapted to pH 5.0, 6.5, and 8.0. Fluorescence curves measured at pH 5.0 and 8.0 showed shorter lifetime components compared with those at pH 6.5. The rapid decay components at pH 5.0 and 8.0 are unveiled by fluorescence decay-associated (FDA) spectra; fluorescence decays occur in the 270 and 160-ps FDA spectra only at pH 5.0 and 8.0, respectively. In addition, energy-transfer pathways with time constants of tens of picoseconds are altered under the basic pH condition but not the acidic pH condition. These findings provide novel insights into pH-dependent energy-transfer and energy-quenching machinery in not only FCP family but also photosynthetic LHCs.  相似文献   
47.
ATP-binding cassette protein A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL). However, the detailed mechanism of HDL formation remains unclear; in order to reveal it, chemicals that specifically block each step of HDL formation would be useful. Cyclosporine A inhibits ABCA1-mediated cholesterol efflux, but it is not clear whether this is mediated via inhibition of calcineurin. We analyzed the effects of cyclosporine A and related compounds on ABCA1 function in BHK/ABCA1 cells. Cyclosporine A, FK506, and pimecrolimus inhibited ABCA1-mediated cholesterol efflux in a concentration-dependent manner, with IC50 of 7.6, 13.6, and 7.0 μM, respectively. An mTOR inhibitor, rapamycin also inhibited ABCA1, with IC50 of 18.8 μM. The primary targets for these drugs were inhibited at much lower concentrations in BHK/ABCA1 cells, suggesting that they were not involved. Binding of [3H] cyclosporine A to purified ABCA1 could be clearly detected. Furthermore, a non-immunosuppressive cyclosporine, PSC833, inhibited ABCA1-mediated cholesterol efflux with IC50 of 1.9 μM, and efficiently competed with [3H] cyclosporine A binding to ABCA1. These results indicate that cyclosporine A and PSC833 inhibit ABCA1 via direct binding, and that the ABCA1 inhibitor PSC833 is an excellent candidate for further investigations of the detailed mechanisms underlying formation of HDL.  相似文献   
48.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号