首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1733篇
  免费   213篇
  国内免费   10篇
  1956篇
  2022年   12篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   35篇
  2015年   92篇
  2014年   86篇
  2013年   92篇
  2012年   127篇
  2011年   111篇
  2010年   93篇
  2009年   68篇
  2008年   88篇
  2007年   70篇
  2006年   83篇
  2005年   75篇
  2004年   64篇
  2003年   71篇
  2002年   58篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   20篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1956条查询结果,搜索用时 0 毫秒
91.
92.
93.
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.  相似文献   
94.
We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.  相似文献   
95.
Seven monosomic addition plants, each containing the full complement of Nicotiana plumbaginifolia (2n = 20, genome constitution PP) and an aberrant chromosome of Nicotiana sylvestris (2n = 24, SS), were produced from backcrosses of hyperdiploid derivatives of the sesquidiploid hybrid PPS to N. plumbaginifolia. The N. sylvestris chromosomes in these plants were characterized by karyotype analysis, Southern hybridization with DNA markers previously localized on N. sylvestris chromosomes and a 269-bp fragment from the 3' end of 25S rDNA, and fluorescence in situ hybridization using 25S rDNA, 5S rDNA and telomere repeats (TTTAGGG)n as probes. The N. sylvestris chromosomes in these plants were identified to be telocentrics 6S, 7S and 8S, and deletions 7S, 10, 12S and 12L, respectively. The successful identification of aberrant chromosomes in these lines enabled us to assign DNA markers to arms and sub-arm regions of N. sylvestris chromosomes. All aberrant chromosomes in the addition lines could be transmitted through mitosis and meiosis. The potential applications of the addition lines in high-resolution physical mapping, the isolation of N. sylvestris chromosomes by flow cytometry, and an understanding of the chromosomal distribution of 45S rDNA in N. sylvestris are discussed.  相似文献   
96.
Leung FW  Iwata F  Kao J  Seno K  Itoh M  Leung JW 《Life sciences》2002,70(7):779-790
Intestinal mucosal capsaicin-sensitive afferent nerves mediate, in part, the mesenteric hyperemia after intraduodenal acidification. The hyperemia plays a role in protecting the duodenal mucosa against acid damage. We tested the hypothesis that bradykinin contributes to this protective hyperemia. A specific antagonist of bradykinin will attenuate the hyperemia and exacerbate duodenal villous damage induced by acid. Study 1: Intravenous vehicle, or the specific bradykinin B2 receptor antagonist (HOE 140) was administered to anesthetized rats. This was followed by intraduodenal bolus administration of 160 microM capsaicin or 0.1 N HCl, and then intravenous bradykinin. Study 2: Intravenous administration of vehicle or HOE 140 was followed by duodenal perfusion with 0.1 N HCl. Superior mesenteric artery blood flow (pulsed Doppler flowmetry) (Study 1) and duodenal villous damage (histology) (Study 2) were recorded. HOE 140 significantly reduced the hyperemia induced by bradykinin and intraduodenal capsaicin or acid. Deep villous injury was significantly increased after treatment with HOE 140. These findings support the hypothesis that acid-induced and afferent nerve-mediated mesenteric hyperemia is modulated by a mechanism that involves bradykinin B2 receptor. Antagonism of bradykinin B2 receptor also increased acid-induced deep duodenal villous damage. Thus, maintenance of bradykinin-mediated mesenteric hyperemia, is a previous unrecognized mechanism associated with protection of the rat duodenal mucosa against acid-induced damage.  相似文献   
97.
Singh US  Kunar MT  Kao YL  Baker KM 《The EMBO journal》2001,20(10):2413-2423
Transamidation is a post-translational modification of proteins mediated by tissue transglutaminase II (TGase), a GTP-binding protein, participating in signal transduction pathways as a non-conventional G-protein. Retinoic acid (RA), which is known to have a role in cell differentiation, is a potent activator of TGASE: The activation of TGase results in increased transamidation of RhoA, which is inhibited by monodansylcadaverine (MDC; an inhibitor of transglutaminase activity) and TGaseM (a TGase mutant lacking transglutaminase activity). Transamidated RhoA functions as a constitutively active G-protein, showing increased binding to its downstream target, RhoA-associated kinase-2 (ROCK-2). Upon binding to RhoA, ROCK-2 becomes autophosphorylated and demonstrates stimulated kinase activity. The RA-stimulated interaction between RhoA and ROCK-2 is blocked by MDC and TGaseM, indicating a role for transglutaminase activity in the interaction. Biochemical effects of TGase activation, coupled with the formation of stress fibers and focal adhesion complexes, are proposed to have a significant role in cell differentiation.  相似文献   
98.
99.
Ralstonia solanacearum is the causal agent of bacterial wilt of many agriculturally important crops. Exopolysaccharide synthesized by products of the epsI operon is the major virulence factor for R. solanacearum. Expression of epsI has been demonstrated to be under the control of several proteins, including several two-component regulators. Overexpression of EpsR was found previously to reduce the amount of synthesis specifically from the epsI promoter. Here we present data that a single chromosomal copy of epsR activates the epsI promoter, suggesting that EpsR is a concentration-dependent effector of epsI gene expression. Furthermore, the ability of EpsR to modulate epsI expression is dependent on the phosphorylation state of EpsR. Gel mobility shift assays suggest that EpsR can specifically bind the epsI promoter and that this binding requires a phosphorylated form of EpsR.  相似文献   
100.
The possible involvement of calcium in the regulation of ammonium-promoted senescence of detached rice leaves was investigated. Calcium effectively reduced ammonium-promoted senescence of detached rice leaves. The effect of ammonium on the senescence was also significantly reduced by the calcium ionophore A23187. Ammonium-promoted senescence of detached rice leaves may be mediated through blocking the entrance of calcium ions into the cytosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号