首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61764篇
  免费   4996篇
  国内免费   4988篇
  2024年   87篇
  2023年   656篇
  2022年   1284篇
  2021年   2793篇
  2020年   1982篇
  2019年   2535篇
  2018年   2655篇
  2017年   2117篇
  2016年   2804篇
  2015年   3429篇
  2014年   4317篇
  2013年   4563篇
  2012年   5345篇
  2011年   5032篇
  2010年   3445篇
  2009年   3035篇
  2008年   3565篇
  2007年   3227篇
  2006年   2765篇
  2005年   2322篇
  2004年   2121篇
  2003年   1972篇
  2002年   1676篇
  2001年   1214篇
  2000年   1023篇
  1999年   787篇
  1998年   506篇
  1997年   409篇
  1996年   363篇
  1995年   367篇
  1994年   344篇
  1993年   256篇
  1992年   332篇
  1991年   288篇
  1990年   240篇
  1989年   212篇
  1988年   145篇
  1987年   187篇
  1986年   159篇
  1985年   139篇
  1984年   109篇
  1983年   102篇
  1982年   87篇
  1981年   81篇
  1980年   54篇
  1979年   66篇
  1978年   68篇
  1976年   53篇
  1973年   63篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
Alginate is an important polysaccharide that is commonly used as a gelling agent in foods, cosmetics and healthcare products. Currently, all alginate used commercially is extracted from brown seaweed. However, with environmental changes such as increasing ocean temperature and the increasing number of biotechnological uses of alginates with specific properties, there is an emerging need for more reliable and customizable sources of alginate. An alternative to seaweed for alginate production is Pseudomonas aeruginosa, a common Gram-negative bacterium that can form alginate-containing biofilms. However, P. aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. Therefore, we sought to engineer a non-pathogenic P. aeruginosa strain that is safe for commercial production of alginate. Using a homologous recombination strategy, we sequentially deleted five key pathogenicity genes from the P. aeruginosa chromosome, resulting in the marker-free strain PGN5. Intraperitoneal injection of mice with PGN5 resulted in 0% mortality, while injection with wild-type P. aeruginosa resulted in 95% mortality, providing evidence that the systemic virulence of PGN5 is highly attenuated. Importantly, PGN5 produces large amounts of alginate in response to overexpression of MucE, an activator of alginate biosynthesis. The alginate produced by PGN5 is structurally identical to alginate produced by wild-type P. aeruginosa, indicating that the alginate biosynthetic pathway remains functional in this modified strain. The genetic versatility of P. aeruginosa will allow us to further engineer PGN5 to produce alginates with specific chemical compositions and physical properties to meet different industrial and biomedical needs.  相似文献   
992.
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short-chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross-feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.  相似文献   
993.
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5′ caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.  相似文献   
994.
995.
The acquisition of sulfur from environment and its assimilation is essential for fungal growth and activities. Here, we describe novel features of the regulatory network of sulfur metabolism in Ogataea parapolymorpha, a thermotolerant methylotrophic yeast with high resistance to harsh environmental conditions. A short bZIP protein (OpMet4p) of O. parapolymorpha, displaying the combined structural characteristics of yeast and filamentous fungal Met4 homologues, plays a key role as a master regulator of cell homeostasis during sulfur limitation, but also its function is required for the tolerance of various stresses. Domain swapping analysis, combined with deletion analysis of the regulatory domains and genes encoding OpCbf1p, OpMet28p, and OpMet32p, indicated that OpMet4p does not require the interaction with these DNA-binding cofactors to induce the expression of sulfur genes, unlike the Saccharomyces cerevisiae Met4p. ChIP analysis confirmed the notion that OpMet4p, which contains a canonical bZIP domain, can bind the target DNA in the absence of cofactors, similar to homologues in other filamentous fungi. Collectively, the identified unique features of the O. parapolymorpha regulatory network, as the first report on the sulfur regulation by a short yeast Met4 homologue, provide insights into conservation and divergence of the sulfur regulatory networks among diverse ascomycetous fungi.  相似文献   
996.
Grassland ecosystems account for more than 10% of the global CH4 sink in soils. A 4‐year field experiment found that addition of P alone did not affect CH4 uptake and experimental addition of N alone significantly suppressed CH4 uptake, whereas concurrent N and P additions suppressed CH4 uptake to a lesser degree. A meta‐analysis including 382 data points in global grasslands corroborated these findings. Global extrapolation with an empirical modelling approach estimated that contemporary N addition suppresses CH4 sink in global grassland by 11.4% and concurrent N and P deposition alleviates this suppression to 5.8%. The P alleviation of N‐suppressed CH4 sink is primarily attributed to substrate competition, defined as the competition between ammonium and CH4 for the methane mono‐oxygenase enzyme. The N and P impacts on CH4 uptake indicate that projected increases in N and P depositions might substantially affect CH4 uptake and alter the global CH4 cycle.  相似文献   
997.
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.  相似文献   
998.
999.
1000.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号