首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59698篇
  免费   4568篇
  国内免费   1714篇
  2024年   67篇
  2023年   308篇
  2022年   836篇
  2021年   1503篇
  2020年   1029篇
  2019年   1284篇
  2018年   1578篇
  2017年   1330篇
  2016年   2011篇
  2015年   3140篇
  2014年   3660篇
  2013年   3937篇
  2012年   5169篇
  2011年   4936篇
  2010年   3108篇
  2009年   2827篇
  2008年   3830篇
  2007年   3661篇
  2006年   3159篇
  2005年   2902篇
  2004年   2595篇
  2003年   2280篇
  2002年   2002篇
  2001年   1493篇
  2000年   1398篇
  1999年   1155篇
  1998年   515篇
  1997年   429篇
  1996年   300篇
  1995年   259篇
  1994年   257篇
  1993年   203篇
  1992年   363篇
  1991年   323篇
  1990年   295篇
  1989年   247篇
  1988年   187篇
  1987年   174篇
  1986年   144篇
  1985年   115篇
  1984年   87篇
  1983年   89篇
  1982年   68篇
  1981年   56篇
  1980年   56篇
  1979年   73篇
  1978年   53篇
  1977年   52篇
  1975年   47篇
  1974年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Histone modifications are known to play important roles in plant development through epigenetic regulation of gene expression. How these modifications regulate downstream targets in response to various environmental cues and developmental stimuli is still largely unknown. Here, we provide evidence that Arabidopsis histone H3K4 methyltransferase SET DOMAIN GROUP2 (SDG2) is required for full activation of hormone responsive genes upon hormone treatment. The pleiotropic phenotypes of sdg2 were closely related to those of auxin deficient mutants and RNA analysis revealed that expression of early hormone responsive genes was significantly reduced in sdg2-5. By ChIP analyses we found that H3K4 tri-methylations on chromatin region of hormone responsive genes such as SAUR27, KIN1 and GASA6 were enriched in WT upon hormone treatments whereas these enrichments were largely abolished in sdg2-5. After hormone treatment, chromatin regions of responsive genes that accumulated H3K4me3 in WT overlapped with those displaying decreased H3K4me3 levels in sdg2-5. Histone H3K4 di-methylation levels on tested genes were increased rather than decreased in sdg2-5, suggesting that SDG2 mediates transition of H3K4me2 to H3K4me3. Taken together, we conclude that the SDG2 activity is required to regulate the expression of hormone responsive genes via histone H3K4 tri-methylation.  相似文献   
992.
A series of naphthoquinone-benzothiazole conjugates were synthesized as algicides, and their efficacies against harmful algal blooming species, such as Chattonella marina, Heterosigma akashiwo and Cochlodinium polykrikoides, were examined. The introduction of substituted benzothiazole at the C2 position of 1,4-naphthoquinone (compounds 19) resulted in higher algicidal activity against C. polykrikoides than the C6 conjugates (compounds 1020). On the other hand, of the C6 conjugates, compounds 11 and 12 exhibited better algicidal activity against H. akashiwo, C. marina, and C. polykrikoides than the C2 conjugates. Further structure-activity analysis indicated that a replacement of the methoxy groups with hydroxyl groups (compounds 2126) decreased the algicidal activity significantly. Among the various synthetic naphthoquinonebezothiazole conjugates tested, compound 12 was found to affect the most significant decrease in the level of C. polykrikoides growth, with an IC50 of 0.19 μM. Compound 11 was found to be the most potent inhibitor against H. akashiwo and C. polykrikoides, with IC50 values of 0.32 and 0.12 μM, respectively. Overall, these results highlight a possible method for controlling and inhibiting red tide forming algae using NQ derivatives.  相似文献   
993.
Rice is the most widely consumed staple food, and is cultivated worldwide to satisfy our daily caloric needs. Thus, extensive efforts on rice breeding and biotechnology have substantially focused on the development of elite cultivars with high yields and better grain quality, as well as enhanced resistance against biotic and abiotic stresses. Recently, it has been observed that rice is more than a just grain-producing crop. Carbon-rich materials of the rice cell wall polysaccharides from post-harvest wastes, including the straw and husk, have been converted into bioethanol and other invaluable, renewable materials. In order to maximize the utilization of cell wall-derived resources, it is imperative to understand cell wall chemistry and molecular mechanism underlying cell wall biosynthesis in rice. In the last decade, several approaches, including mutational genetics and the functional characterization of candidate genes, have been successful in isolating some of cell wall biosynthetic genes in rice, marking the first step forward in obtaining a complete understanding of rice cell wall biosynthesis, although the exact biochemical functions have not been conclusive. In this paper, we focus on integrating old and new information to provide an updated perspective in the cell wall formation of rice, highlighting the chemical structures and biosynthesis of rice cell wall polysaccharides.  相似文献   
994.
995.
996.
Cellulose-binding domain (CBD) enriches cellulolytic enzymes on cellulosic surfaces and contributes to the catalytic efficiency by increasing enzyme-substrate complex formations. Thus, high affinity CBDs are essential for the development of efficient cellulose-degrading enzymes. Here, we present a microtiter plate-based assay system to measure the binding affinity of CBDs to cellulose. The assay uses a periplasmic alkaline phosphatase (AP) as a fusion reporter and its activity is detected using a fluorogenic substrate, 4-methylumbelliferyl phosphate. Lignocellulose discs of 6 mm in diameter were used as substrates in 96-well plate. As a result, the enzyme-linked assay detected the binding of CBDs on the cellulosic discs in a highly sensitive manner, detecting from 0.05 to 1.0 μg/mL of APCBD proteins, which is several hundred times more sensitive than conventional protein measurements. The proposed method was applied to compare the binding affinity of different CBDs from Cellulomonas fimi to lignocellulose discs.  相似文献   
997.
Single use culture systems are a tool in research and biotechnology manufacturing processes and are employed in mammalian cell-based manufacturing processes. Recently, we characterized a novel bioreactor system developed by PBS Biotech. The Pneumatic Bioreactor System? (PBS) employs the Air-wheel?, which is a mixing device similar in structure to a water wheel but is driven by the buoyant force of gas bubbles. In this study, we investigated the physical properties of the PBS system, with which we performed biological tests. In 2 L PBS, the mixing times ranged from 6 (30 rpm, 0.175 vvm) to 15 sec (10 rpm, 0.025 vvm). The kLa value reached upto 7.66/h at 0.5 vvm, even without a microsparger, though this condition is not applicable for cell cultures. Also, when a 10 L PBS equipped with a microsparger was evaluated, a kLa value of upto approximately 20/h was obtained particularly in mild cell culture conditions. We performed cultivation of Chinese hamster ovary (CHO) cells in 2 and 10 L PBS prototypes. Results from the PBS were compared with those from an Erlenmeyer flask and conventional stirred tank type bioreactor (STR). The maximum cell density of 10.6 × 106 cells/mL obtained fromthe 2 L PBSwas about 2 times higher than that from the Erlenmeyer flask (5.6 × 106 cells/mL) andwas similar to the STR (9.7 × 106 cells/mL) when the CHO-S cells were cultured. These results support the general suitability of the PBS system using pneumatic mixing for suspension cell cultivation as a novel single-use bioreactor system.  相似文献   
998.
The simple proton-translocating inorganic pyrophosphatase (H+-PPase) found in plants and protists is an evolutionally conserved, essential enzyme that catalyzes the hydrolysis of pyrophosphate (PPi). Little is known about the functional contribution of H+-PPase to the cellular response to abiotic stresses, except its high salinity and drought stress. To investigate the role of H+-PPase during response to cellular stress, we isolated the cDNA of Arabidopsis thaliana H+-PPase (AVP1) and Oryza sativa H+-PPase (OVP1) and constructed transgenic Saccharomyces cerevisiae and Escherichia coli lines that express AVP1 and OVP1. In S. cerevisiae, the expression of a chimeric derivative of the AVP1 and OVP1 alleviated the phenotype associated with ipp2-deficient cells in the presence of high salinity (NaCl) and metal stressors (Cd, Mn, and Zn). In E. coli, AVP1 and OVP1 overexpression conferred enhanced tolerance to abiotic stresses, including heat shock and H2O2, as well as NaCl, Cd, Mn, Zn, Ca, and Al. Interestingly, AVP1 and OVP1 overexpression resulted in hypersensitivity to menadione and cobalt. These results demonstrate the cellular capacity of AVP1- and OVP1-expressing transgenic yeast and E. coli in response to physiological, abiotic stresses. Moreover, our results suggest new ways of engineering stress-tolerant plants that are capable of responding to climate change. Here, we provide an outline of an experimental system to examine the alternative roles of plant H+-PPase.  相似文献   
999.
1000.
Three closely related species of the genus Probles Förster, P. fulgida sp. n., P. korusa sp. n. and P. rukora sp. n., belong to the subgenus Euporizon Horstmann and differ from other Palearctic species of the genus by a combination of long and apically weakly sinuate ovipositor and short temple. These three species are assigned to a newly designated fulgida species-group, and a portion of the key for identification of this species-group is provided. Based on the shape of the ovipositor apex, the fulgida species-group resemble members of the subgenus Microdiaparsis Horstmann but are distinct in having a much shorter temple.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号