首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24602篇
  免费   2130篇
  国内免费   2450篇
  2024年   44篇
  2023年   290篇
  2022年   618篇
  2021年   1275篇
  2020年   858篇
  2019年   1144篇
  2018年   1115篇
  2017年   795篇
  2016年   1120篇
  2015年   1674篇
  2014年   1995篇
  2013年   1956篇
  2012年   2415篇
  2011年   2253篇
  2010年   1374篇
  2009年   1221篇
  2008年   1469篇
  2007年   1306篇
  2006年   1049篇
  2005年   916篇
  2004年   772篇
  2003年   722篇
  2002年   660篇
  2001年   368篇
  2000年   302篇
  1999年   309篇
  1998年   199篇
  1997年   160篇
  1996年   123篇
  1995年   101篇
  1994年   90篇
  1993年   57篇
  1992年   82篇
  1991年   52篇
  1990年   53篇
  1989年   58篇
  1988年   30篇
  1987年   20篇
  1986年   23篇
  1985年   32篇
  1984年   12篇
  1983年   14篇
  1982年   7篇
  1981年   5篇
  1979年   4篇
  1975年   5篇
  1970年   3篇
  1966年   3篇
  1965年   3篇
  1964年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Obesity is associated with significant microvascular complications including renal injuries and may induce end‐stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR‐802 in obesity‐related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR‐802 in protecting against nephropathy. Renal miR‐802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR‐802 improved high fat diet (HFD)‐induced renal dysfunction, structural disorders and fibrosis. The up‐regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR‐802 inhibitor‐treated obese mice. Mechanistically, miR‐802 directly bond to 3?‐UTR of NF‐κB‐repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR‐802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR‐802/NRF signalling was an important pathway in mediating obesity‐related nephropathy. It is a possible useful clinical approach of treating miR‐802 inhibitor to combat nephropathy.  相似文献   
992.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   
993.
Berberine (BBR) is a natural isoquinoline alkaloid, which is used in traditional medicine for its anti‐microbial, anti‐protozoal, anti‐diarrhoeal activities. Berberine interacts with DNA and displays anti‐cancer activities, yet its effects on cellular DNA repair and on synthetic treatments with chemotherapeutic drugs remain unclear. In this study, we investigated the effects of BBR on DNA repair and on sensitization of breast cancer cells to different types of DNA damage anti‐tumoural drugs. We found BBR arrested cells in the cell cycle S phase and induced DNA breaks. Cell growth analysis showed BBR sensitized MDA‐MB‐231 cells to cisplatin, camptothecin and methyl methanesulfonate; however, BBR had no synergistic effects with hydroxurea and olaparib. These results suggest BBR only affects specific DNA repair pathways. Western blot showed BBR down‐regulated XRCC1 expressions, and the rescued XRCC1 recovered the resistance of cancer cells to BBR. Therefore, we conclude that BBR interferes with XRCC1‐mediated base excision repair to sensitize cancer cells to chemotherapeutic drugs. These finding can contribute to understanding the effects of BBR on cellular DNA repair and the clinical employment of BBR in treatment of breast cancer.  相似文献   
994.
Golgi phosphoprotein 73 (GP73) has been regarded as a novel serum biomarker for the diagnosis of hepatocellular carcinoma (HCC) in recent years. It has been reported that the upregulation of GP73 may promote the carcinogenesis and metastasis of HCC; however, the mechanisms remain poorly understood. In this study, GP73 correlates positively with matrix metalloproteinase‐2 (MMP‐2) in HCC‐related cells and tissues. Further studies indicate that the knockdown of GP73 blocks MMP‐2 trafficking and secretion, resulting in cell invasion inhibition. Additionally, the knockdown of GP73 induces the accumulation of intracellular MMP‐2, which inhibits the phosphorylation of Src at Y416 and triggers the inhibition of SAPK/JNK and p53‐p21 signalling pathways through a negative feedback loop. Finally, the transactivation of MMP2 was inhibited by the reduction in E2F1. This study reveals that GP73 plays functional roles in the trafficking and equilibrium of epithelial‐mesenchymal transition (EMT)‐related secretory proteins and that GP73 serves as a new potential target for combating the metastasis of HCC.  相似文献   
995.
MiRNAs are a class of small non‐coding RNAs that are involved in the development and progression of various complex diseases. Great efforts have been made to discover potential associations between miRNAs and diseases recently. As experimental methods are in general expensive and time‐consuming, a large number of computational models have been developed to effectively predict reliable disease‐related miRNAs. However, the inherent noise and incompleteness in the existing biological datasets have inevitably limited the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a novel method for miRNA‐disease association prediction based on matrix completion and label propagation. Specifically, our method first reconstructs a new miRNA/disease similarity matrix by matrix completion algorithm based on known experimentally verified miRNA‐disease associations and then utilizes the label propagation algorithm to reliably predict disease‐related miRNAs. As a result, MCLPMDA achieved comparable performance under different evaluation metrics and was capable of discovering greater number of true miRNA‐disease associations. Moreover, case study conducted on Breast Neoplasms further confirmed the prediction reliability of the proposed method. Taken together, the experimental results clearly demonstrated that MCLPMDA can serve as an effective and reliable tool for miRNA‐disease association prediction.  相似文献   
996.
Advances in microarray, RNA‐seq and omics techniques, thousands of long non‐coding RNAs (lncRNAs) with unknown functions have been discovered. LncRNAs have presented a diverse perspective on gene regulation in diverse biological processes, especially in human immune response. Macrophages participate in the whole phase of immune inflammatory response. They are able to shape their phenotype and arouse extensive functional activation after receiving physiological and pathological stimuli. Emerging studies indicated that lncRNAs participated in the gene regulatory network during complex biological processes of macrophage, including macrophage‐induced inflammatory responses. Here, we reviewed the existing knowledges of lncRNAs in the processes of macrophage development and polarization, and their roles in several different inflammatory diseases. Specifically, we focused on how lncRNAs function in macrophage, which might help to discover some potential therapeutic targets and diagnostic biomarkers.  相似文献   
997.
998.
999.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   
1000.
BAG3 is constitutively expressed in multiple types of cancer cells and its high expression is associated with tumour progression and poor prognosis of PDAC . However, little is known about the role of BAG3 in the regulation of stromal microenvironment of PDAC. The current study demonstrated that beside PDAC tumour cells, BAG3 was also expressed in some activated stroma cells in PDAC tissue, as well as in activated PSCs. In addition, the current study demonstrated that BAG3 expression in PSCs was involved in maintenance of PSCs activation and promotion of PDACs invasion via releasing multiple cytokines. The current study demonstrated that BAG3‐positive PSCs promoted invasion of PDACs via IL‐8, MCP1, TGF‐β2 and IGFBP2 in a paracrine manner. Furthermore, BAG3 sustained PSCs activation through IL‐6, TGF‐β2 and IGFBP2 in an autocrine manner. Thereby, the current study provides a new insight into the involvement of BAG3 in remodelling of stromal microenvironment favourable for malignant progression of PDAC, indicating that BAG3 might serve as a potential target for anti‐fibrosis of PDAC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号