首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16602篇
  免费   1566篇
  国内免费   1826篇
  2024年   37篇
  2023年   199篇
  2022年   441篇
  2021年   713篇
  2020年   567篇
  2019年   745篇
  2018年   728篇
  2017年   528篇
  2016年   737篇
  2015年   1092篇
  2014年   1304篇
  2013年   1291篇
  2012年   1615篇
  2011年   1514篇
  2010年   948篇
  2009年   838篇
  2008年   1049篇
  2007年   950篇
  2006年   780篇
  2005年   695篇
  2004年   607篇
  2003年   550篇
  2002年   541篇
  2001年   280篇
  2000年   220篇
  1999年   208篇
  1998年   150篇
  1997年   105篇
  1996年   82篇
  1995年   63篇
  1994年   64篇
  1993年   45篇
  1992年   56篇
  1991年   37篇
  1990年   41篇
  1989年   29篇
  1988年   19篇
  1987年   16篇
  1986年   18篇
  1985年   16篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1979年   5篇
  1975年   5篇
  1970年   3篇
  1966年   3篇
  1965年   3篇
  1964年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
122.
123.
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c‐Ski, suggesting that this approach may have therapeutic effects. c‐Ski was found to be down‐regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up‐regulated c‐Ski expression with a c‐Ski–overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c‐Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α‐SMA were higher in the groups of dogs subjected to right‐atrial pacing, and this increase was attenuated by c‐Ski overexpression. In addition, c‐Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38β) as well as the expression of TGF‐β1 in atrial tissues, as shown by a comparison of the right‐atrial pacing + c‐Ski‐overexpression group to the control group with right‐atrial pacing only. These results suggest that c‐Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF‐β1–Smad signalling and p38 MAPK activation.  相似文献   
124.
Two new norlignans together with two known phenylpropanoids were isolated from the whole herb of Anemone vitifolia. All compounds were reported from this plant for the first time. The structures of these compounds were identified by comprehensive HR‐ESI‐MS, 1D and 2D NMR spectroscopic data analysis and comparison with literature data. Additionally, bioactivity study results showed that two new compounds have potential anti‐inflammatory activity. The plausible biosynthetic pathway for these compounds were also speculated in this article.  相似文献   
125.
126.
127.
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights.  相似文献   
128.
The electrochemical nitrogen reduction reaction (NRR) process usually suffers extremely low Faradaic efficiency and ammonia yields due to sluggish N?N dissociation. Herein, single‐atomic ruthenium modified Mo2CTX MXene nanosheets as an efficient electrocatalyst for nitrogen fixation at ambient conditions are reported. The catalyst achieves a Faradaic efficiency of 25.77% and ammonia yield rate of 40.57 µg h?1 mg?1 at ‐0.3 V versus the reversible hydrogen electrode in 0.5 m K2SO4 solution. Operando X‐ray absorption spectroscopy studies and density functional theory calculations reveal that single‐atomic Ru anchored on MXene nanosheets act as important electron back‐donation centers for N2 activation, which can not only promote nitrogen adsorption and activation behavior of the catalyst, but also lower the thermodynamic energy barrier of the first hydrogenation step. This work opens up a promising avenue to manipulate catalytic performance of electrocatalysts utilizing an atomic‐level engineering strategy.  相似文献   
129.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
130.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号