首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2895篇
  免费   233篇
  国内免费   4篇
  2024年   5篇
  2023年   26篇
  2022年   51篇
  2021年   103篇
  2020年   46篇
  2019年   71篇
  2018年   87篇
  2017年   67篇
  2016年   77篇
  2015年   146篇
  2014年   162篇
  2013年   175篇
  2012年   271篇
  2011年   260篇
  2010年   143篇
  2009年   122篇
  2008年   157篇
  2007年   149篇
  2006年   116篇
  2005年   121篇
  2004年   120篇
  2003年   90篇
  2002年   80篇
  2001年   71篇
  2000年   56篇
  1999年   56篇
  1998年   26篇
  1997年   19篇
  1996年   8篇
  1995年   13篇
  1994年   12篇
  1993年   16篇
  1992年   18篇
  1991年   16篇
  1990年   17篇
  1989年   24篇
  1988年   13篇
  1987年   11篇
  1986年   14篇
  1985年   11篇
  1984年   7篇
  1983年   12篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1977年   4篇
  1976年   6篇
  1973年   4篇
  1970年   4篇
  1969年   4篇
排序方式: 共有3132条查询结果,搜索用时 44 毫秒
81.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   
82.
We cloned two genes coding F107-C and K88-1NT fimbrial subunits from strains E. coli C and 1NT isolated from Thua Thien Hue province, Vietnam. The mature peptide of faeG gene from strain E. coli 1NT (called faeG-1NT) is 100 % similarity with faeG gene, while the CDS of fedA gene from strain C (called fedA-C) has a similarity of 97 % with the fedA gene. Expression of the faeG-1NT and fedA-C genes in E. coli BL21 Star™ (DE3) produced proteins of ~31 and 22 kDa, respectively. The effect of IPTG concentration on the K88-1NT and F107-C fimbriae production was investigated. The results showed that 0.5 mM IPTG is suitable for higher expression of K88-1NT subunit, while 0.75 mM IPTG strongly stimulated expression of F107-C subunit. The optimal induction time for expression was also examined. Generally, highest expression of K88-1NT subunit occurred after 6 h of induction, while that of F107-C subunit is after 14 h.  相似文献   
83.
84.
ATG4B belongs to the autophagin family of cysteine proteases required for autophagy, an emerging target of cancer therapy. Developing pharmacological ATG4B inhibitors is a very active area of research. However, detailed studies on the role of ATG4B during anticancer therapy are lacking. By analyzing PC-3 and C4-2 prostate cancer cells overexpressing dominant negative ATG4BC74Ain vitro and in vivo, we show that the effects of ATG4BC74A are cell type, treatment, and context-dependent. ATG4BC74A expression can either amplify the effects of cytotoxic therapies or contribute to treatment resistance. Thus, the successful clinical application of ATG4B inhibitors will depend on finding predictive markers of response.  相似文献   
85.
Four new lanostane triterpenes, butyl lucidenate P (1), butyl lucidenate D2 (2), butyl lucidenate E2 (3) and butyl lucidenate Q (4) along with 11 known compounds (515) were isolated from the fruiting bodies of Ganoderma lucidum. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW 264.7 cells. Compounds 1, 3, 4, 9, 10 and 15 showed inhibitory potency with IC50 values of 7.4, 6.4, 4.3, 9.4, 9.2 and 4.5 μM, respectively. Compounds 1, 3 and 15 dose-dependently reduced the LPS-induced iNOS expressions. Preincubation of cell with 1, 3 and 15 significantly suppressed LPS-induced expression of COX-2 protein.  相似文献   
86.
Three new pyrrole oligoglycosides, astebatheriosides A–C (13), and a new furan oligoglycoside, astebatherioside D (4), were isolated from the starfish Asterina batheri by various chromatographic methods. Their structures were elucidated by spectroscopic and chemical methods. Compounds 2, 3, and 4 moderately inhibited IL-12 p40 production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) with IC50 values of 36.4, 31.6, and 22.8 μM, respectively.  相似文献   
87.
A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model. Consistent with its action in vitro being through TRPV1, compound 24S blocked capsaicin-induced hypothermia in mice. Docking analysis of 24S with our hTRPV1 homology model was performed to identify its binding mode.  相似文献   
88.
In an effort to design inhibitors of human glutaminyl cyclase (QC), we have synthesized a library of N-aryl N-(5-methyl-1H-imidazol-1-yl)propyl thioureas and investigated the contribution of the aryl region of these compounds to their structure–activity relationships as cyclase inhibitors. Our design was guided by the proposed binding mode of the preferred substrate for the cyclase. In this series, compound 52 was identified as the most potent QC inhibitor with an IC50 value of 58 nM, which was two-fold more potent than the previously reported lead 2. Compound 52 is a most promising candidate for future evaluation to monitor its ability to reduce the formation of pGlu-Aβ and Aβ plaques in cells and transgenic animals.  相似文献   
89.
The aim of this study is to determine the contribution of the ciliary epithelium to glutathione (GSH) levels in the aqueous by mapping GSH metabolism and transport pathways in the rat ciliary body. Using a combination of molecular and immunohistochemical techniques, we screened and localised enzymes and transporters involved in GSH synthesis, uptake, efflux and degradation. Our findings indicate that both the pigmented epithelial (PE) and the non-pigmented epithelial (NPE) cell layers are capable of accumulating precursor amino acids for GSH synthesis, but only the NPE cells appear to be involved in the direct uptake of precursor amino acids from the stroma. The localisation of GSH efflux transporters to the PE cell and PE–NPE interface indicates that GSH and potentially GSH-S conjugates can be removed from the ciliary epithelium into the stroma, while the location of GSH efflux transporters to the basolateral membrane of the NPE indicates that these cells can mediate GSH secretion into the aqueous. GSH secreted by the ciliary into the aqueous would remain largely intact due to the absence of the GSH degradation enzymes γ-glutamyltranspeptidase (γ-GGT) labelling at the basolateral membrane of the NPE. Therefore, it appears that the ciliary epithelium contains the molecular machinery to mediate GSH secretion into the aqueous.  相似文献   
90.
Bacterial cultures were enriched from sediments in Germany and Vietnam reductively dechlorinating hexachlorobenzene and the highly persistent 1,3,5-trichlorobenzene to monochlorobenzene. The main products of the reductive dechlorination of hexachlorobenzene were monochlorobenzene and dichlorobenzenes (1,2-; 1,3- and 1,4-dichlorobenzene) while no trichlorobenzenes accumulated. For the reductive dechlorination of 1,3,5-trichlorobenzene with the mixed culture from Vietnam sediment, 1,3- dichlorobenzene and monochlorobenzene were produced as intermediate and final end-product, respectively. The pattern of dechlorination did not change when the cultures were repeatedly exposed to oxygen over seven transfers demonstrating oxygen tolerance of the dechlorinating bacteria. However, reductive dechlorination of 1,3,5-trichlorobenzene was inhibited by vancomycin at a concentration of 5 mg L?1. Vancomycin delayed reductive dechlorination of hexachlorobenzene in mixed cultures by about 6 months. When repeatedly applied, vancomycin completely abolished the ability of the mixed culture to transform hexachlorobenzene. Sensitivity to vancomycin and insensitivity to brief exposure of oxygen indicates that the dechlorinating bacteria in the mixed cultures did not belong to the genus Dehalococcoides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号