首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   5篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   8篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1937年   2篇
排序方式: 共有129条查询结果,搜索用时 62 毫秒
101.
102.
Brain insulin controls adipose tissue lipolysis and lipogenesis   总被引:1,自引:0,他引:1  
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.  相似文献   
103.
The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists.  相似文献   
104.
105.
The effects of passive wing flapping on respiratory pattern were examined in decerebrate Canada geese. The birds were suspended dorsally with two spine clamps while the extended wings were continuously moved up and down with a device designed to reproduce actual wing flapping. Passive wing motion entrained respiration over limited ranges by both increasing and decreasing the respiratory period relative to rest. All ratios of wingbeat frequency to respiratory frequency seen during free flight (Soc. Neurosci. Abstr. 15: 391, 1989) were produced during passive wing flapping. In addition, the phase relationship between wingbeat frequency and respiratory frequency, inspiration starting near the peak of wing upstroke, was similar to that seen during free flight and was unaffected by perturbations of the wing-flapping cycle. Removal of all afferent activity from the wings did not affect the ability of continuous passive wing movement to entrain respiration. However, feedback from the wings was required to produce rapid within-breath shifts in the respiratory period in response to single wing flaps. In conclusion, although feedback from the chest wall/lung may be more important in producing entrainment during the stable conditions of passive wing flapping, wing-related feedback may be critically involved in mediating the rapid adjustments in respiratory pattern required to maintain coordination between wing and respiratory movements during free flight.  相似文献   
106.
To determine whether an interaction between central respiratory and locomotor networks may be involved in the observed coordination of wingbeat and respiratory rhythms during free flight in birds, we examined the relationship between wingbeat and respiratory activity in decerebrate Canada geese and Pekin ducks before and after paralysis. Locomotor activity was induced through electrical stimulation of brain stem locomotor regions. Respiratory frequency (fv) was monitored via pneumotachography and intercostal electromyogram recordings before paralysis and via intercostal and cranial nerve IX electroneurogram recordings after paralysis. Wingbeat frequency (fW) was monitored using pectoralis major electromyogram recordings before, and electroneurogram recordings after, paralysis. Respiratory and cardiovascular responses of decerebrate birds during active (nonparalyzed) and "fictive" (paralyzed) wing activity were qualitatively similar to those of a variety of vertebrate species to exercise. As seen during free flight, wingbeat and respiratory rhythms were always coordinated during electrically induced wing activity. Before paralysis during active wing flapping, coupling ratios (fW/fv) of 1:1, 2:1, 3:1, and 4:1 (wingbeats per breath) were observed. After paralysis, fW and fv remained coupled; however, 1:1 coordination predominated. All animals tested (n = 9) showed 1:1 coordination. Two animals also showed brief periods of 2:1 coupling. It is clear that locomotor and respiratory networks interact on a central level to produce a synchronized output. The observation that the coordination between fW and fv differs in paralyzed and nonparalyzed birds suggests that peripheral feedback is involved in the modulation of a centrally derived coordination.  相似文献   
107.
1. Chinese-hamster ovary fibroblasts were cultured to provide a homogeneous cell population. Homogenates obtained from these cells were fractionated by centrifugation techniques and the resulting fractions were analysed for protein and for enzymes representative of certain subcellular particles. 2. Unlike those in rat liver homogenates, the mitochondrial and lysosomal populations proved impossible to separate by differential centrifugation owing to the similarity of their sedimentation properties. Their resolution was possible by using isopycnic centrifugation in a continuous sucrose density gradient. 3. The mitochondrial population equilibrated at a density of 1.17g.cm(-3) as in rat liver homogenates. However, the lysosomal population equilibrated at a lower rather than a higher density position than the mitochondria and the probable reasons for this are discussed. 4. The lysosomal population subdivided into two groups characterized by differences in acid hydrolase content and equilibrium densities. The fraction with a density of 1.15g.cm(-3) contained the majority of arylsulphatases A and B, of cathepsin and of beta-acetylglucosaminidase activities, whereas that with a density of 1.09g.cm(-3) contained the majority of the acid phosphatase and acid ribonuclease activities. The probable division of the lysosomal population of a single cell into a number of distinguishable subgroups is suggested.  相似文献   
108.
Conditions based on previous assays with potassium p-acetylphenyl sulphate have been established for the specific assay of arylsulphatase C in rat tissues. The enzyme has optimum activity with 40mm substrate at pH8.0 in the presence of 0.1m-phosphate buffer. Under these conditions arylsulphatase C can be assayed without interference from the other arylsulphatase enzymes present and is useful as a marker for the endoplasmic reticulum in cell-fractionation studies.  相似文献   
109.
110.
Abstract Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号