首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   31篇
  535篇
  2021年   9篇
  2020年   9篇
  2017年   6篇
  2015年   12篇
  2014年   11篇
  2013年   16篇
  2012年   21篇
  2011年   17篇
  2010年   16篇
  2009年   12篇
  2008年   15篇
  2007年   22篇
  2006年   17篇
  2005年   19篇
  2004年   15篇
  2003年   21篇
  2002年   14篇
  2001年   17篇
  2000年   7篇
  1999年   11篇
  1998年   11篇
  1997年   11篇
  1996年   4篇
  1994年   9篇
  1992年   4篇
  1990年   7篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1985年   6篇
  1982年   5篇
  1981年   5篇
  1979年   6篇
  1976年   4篇
  1975年   7篇
  1974年   8篇
  1973年   4篇
  1972年   11篇
  1971年   6篇
  1970年   7篇
  1969年   8篇
  1968年   6篇
  1967年   8篇
  1944年   3篇
  1938年   3篇
  1933年   4篇
  1931年   3篇
  1930年   3篇
  1917年   3篇
  1903年   3篇
排序方式: 共有535条查询结果,搜索用时 15 毫秒
91.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   
92.
93.
Ecdysteroid pulses trigger the major developmental transitions during the Drosophila life cycle. These hormonal responses are thought to be mediated by the ecdysteroid receptor (EcR) and its heterodimeric partner Ultraspiracle (USP). We provide evidence for a second ecdysteroid signaling pathway mediated by DHR38, the Drosophila ortholog of the mammalian NGFI-B subfamily of orphan nuclear receptors. DHR38 also heterodimerizes with USP, and this complex responds to a distinct class of ecdysteroids in a manner that is independent of EcR. This response is unusual in that it does not involve direct binding of ecdysteroids to either DHR38 or USP. X-ray crystallographic analysis of DHR38 reveals the absence of both a classic ligand binding pocket and coactivator binding site, features that seem to be common to all NGFI-B subfamily members. Taken together, these data reveal the existence of a separate structural class of nuclear receptors that is conserved from fly to humans.  相似文献   
94.
Stevioside is a diterpenoid glycoside consisting of an aglycone (steviol) and three glucose molecules. It is commonly used as an anti-hyperglycemic food because of its non-caloric property. Therefore, it is of interest to document the interactions of stevioside with AKT & PPAR-γ proteins using Autodock Vina PyRx docking techniques. Results of the docking studies indicate that stevioside had more than two hydrogen bond interactions with the AKT and PPAR γ protein for further consideration.  相似文献   
95.
96.
Soils support an enormous microbial diversity, but the ecological drivers of this diversity are poorly understood. Interactions between the roots of individual grass species and the arbuscular mycorrhizal (AM) fungi and bacteria in their rhizoplane were studied in a grazed, unimproved upland pasture. Individual root fragments were isolated from soil cores, DNA extracted and used to identify plant species and assess rhizoplane bacterial and AM fungal assemblages, by amplifying part of the small-subunit ribosomal RNA gene, followed by terminal restriction fragment length polymorphism analysis. For the first time we showed that AM fungal and bacterial assemblages are related in situ and that this relationship occurred at the community level. Principal coordinate analyses of the data show that the AM fungi were a major factor determining the bacterial assemblage on grass roots. We also report a strong influence of the composition of the plant community on AM fungal assemblage. The bacterial assemblage was also influenced by soil pH and was spatially structured, whereas AM fungi were influenced neither by the bacteria nor by soil pH. Our study shows that linkages between plant roots and their microbial communities exist in a complex web of interactions that act at individual and at community levels, with AM fungi influencing the bacterial assemblage, but not the other way round.  相似文献   
97.
By using a microarray screen to compare gene responses after sterile laser wounding of wild-type and 'macrophageless' serpent mutant Drosophila embryos, we show the wound-induced programmes that are independent of a pathogenic response and distinguish which of the genes are macrophage dependent. The evolutionarily conserved nature of this response is highlighted by our finding that one such new inflammation-associated gene, growth arrest and DNA damage-inducible gene 45 (GADD45), is upregulated in both Drosophila and murine repair models. Comparison of unwounded wild-type and serpent mutant embryos also shows a portfolio of 'macrophage-specific' genes, which suggest analogous functions with vertebrate inflammatory cells. Besides identifying the various classes of wound- and macrophage-related genes, our data indicate that sterile injury per se, in the absence of pathogens, triggers induction of a 'pathogen response', which might prime the organism for what is likely to be an increased risk of infection.  相似文献   
98.

Background

Brain-derived neurotrophic factor (BDNF) is an activity-dependent secreted protein that is critical to organization of neuronal networks and synaptic plasticity, especially in the hippocampus. We tested hypothesis that reduced CSF BDNF is associated with age-related cognitive decline.

Methodology/Principal Findings, and Conclusions/Significance

CSF concentration of BDNF, Aβ42 and total tau were measured in 128 cognitively normal adults (Normals), 21 patients with Alzheimer''s disease (AD), and nine patients with Mild Cognitive Impairment. Apolipoprotein E and BDNF SNP rs6265 genotype were determined. Neuropsychological tests were performed at baseline for all subjects and at follow-up visits in 50 Normals. CSF BDNF level was lower in AD patients compared to age-matched Normals (p = 0.02). CSF BDNF concentration decreased with age among Normals and was higher in women than men (both p<0.001). After adjusting for age, gender, education, CSF Aβ42 and total tau, and APOE and BDNF genotypes, lower CSF BDNF concentration was associated poorer immediate and delayed recall at baseline (both p<0.05) and in follow up of approximately 3 years duration (both p<0.01).

Conclusions/Significance

Reduced CSF BDNF was associated with age-related cognitive decline, suggesting a potential mechanism that may contribute in part to cognitive decline in older individuals.  相似文献   
99.
Itch is a ubiquitin ligase that has been implicated in the regulation of a number of cellular processes. We previously have identified Itch as a binding partner for the endocytic protein Endophilin and found it to be localized to endosomes. Using affinity purification coupled to mass spectrometry, we have now identified the ubiquitin-protease FAM/USP9X as a binding partner of Itch. The association between Itch and FAM/USP9X was confirmed in vitro by glutathione S-transferase pulldown and in vivo through coimmunoprecipation. Itch and FAM partially colocalize in COS-7 cells at the trans-Golgi network and in peripheral vesicles. We mapped the FAM-binding domain on Itch to the WW domains, a region known to be involved in substrate recognition. However, transient overexpression of FAM/USP9X resulted in the deubiquitylation of Itch. Moreover, we show that Itch auto-ubiquitylation leads to its degradation in the proteasome. By examining the amounts of Itch and FAM in various cell lines and rat tissues, a positive correlation was found in the expression of both proteins. This observation suggests that the levels of FAM expression could have an influence on Itch in cells. Experimental decrease in FAM levels by RNA interference leads to a significant reduction in intracellular levels of endogenous Itch, which can be prevented by treatment with the proteasome inhibitor lactacystin. Accordingly, overexpression of FAM/USP9X resulted in a marked increase in endogenous Itch levels. These results demonstrate an intriguing interplay between a ubiquitin ligase and a ubiquitin protease, based on direct interaction between the two proteins.  相似文献   
100.

Background

Recently, there has been a surge of interest in developing compounds selectively targeting mitochondria for the treatment of neoplasms. The critical role of mitochondria in cellular metabolism and respiration supports this therapeutic rationale. Dysfunction in the processes of energy production and metabolism contributes to attenuation of response to pro-apoptotic stimuli and increased ROS production both of which are implicated in the initiation and progression of most human cancers.

Methodology/Principal Findings

A high-throughput MTT-based screen of over 10,000 drug-like small molecules for anti-proliferative activity identified the phosphonium salts TP187, 197 and 421 as having IC50 concentrations in the submicromolar range. TP treatment induced cell cycle arrest independent of p53 status, as determined by analysis of DNA content in propidium iodide stained cells. In a mouse model of human breast cancer, TP-treated mice showed significantly decreased tumor growth compared to vehicle or paclitaxel treated mice. No toxicities or organ damage were observed following TP treatment. Immunohistochemical staining of tissue sections from TP187-treated tumors demonstrated a decrease in cellular proliferation and increased caspase-3 cleavage. The fluorescent properties of analog TP421 were exploited to assess subcellular uptake of TP compounds, demonstrating mitochondrial localization. Following mitochondrial uptake cells exhibited decreased oxygen consumption and concomittant increase in mitochondrial superoxide production. Proteomics analysis of results from a 600 target antibody microarray demonstrated that TP compounds significantly affected signaling pathways relevant to growth and proliferation.

Conclusions/Significance

Through our continued interest in designing compounds targeting cancer-cell metabolism, the Warburg effect, and mitochondria we recently discovered a series of novel, small-molecule compounds containing a triphenylphosphine moiety that show remarkable activity in a panel of cancer cell lines as well as in a mouse model of human breast cancer. The mechanism of action includes mitochondrial localization causing decreased oxygen consumption, increased superoxide production and attenuated growth factor signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号