首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
21.
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.  相似文献   
22.
The spectrin-based cytoskeleton is critical for cell stability, membrane organization and membrane protein trafficking. At its core is the high-affinity complex between β-spectrin and ankyrin. Defects in either of these proteins may cause hemolytic disease, developmental disorders, neurologic disease, and cancer. Crystal structures of the minimal recognition motifs of ankyrin and β-spectrin have been determined and distinct recognition mechanisms proposed. One focused on the complementary surface charges of the minimal recognition motifs, whereas the other identified an unusual kink between β-spectrin repeats and suggested a conformation-sensitive binding surface. Using isothermal titration calorimetry and site-directed mutagenesis, we demonstrate the primacy of the inter-repeat kink as the critical determinant underlying spectrin’s ankyrin affinity. The clinical implications of this are discussed in light of recognized linker mutations and polymorphisms in the β-spectrins.  相似文献   
23.
Selenocysteine (Sec), the 21st amino acid, is synthesized from a serine precursor in a series of reactions that require selenocysteine tRNA (tRNASec). In archaea and eukaryotes, O-phosphoseryl-tRNASec:selenocysteinyl-tRNASec synthase (SepSecS) catalyzes the terminal synthetic reaction during which the phosphoseryl intermediate is converted into the selenocysteinyl moiety while being attached to tRNASec. We have previously shown that only the SepSecS tetramer is capable of binding to and recognizing the distinct fold of tRNASec. Because only two of the four tRNA-binding sites were occupied in the crystal form, a question was raised regarding whether the observed arrangement and architecture faithfully recapitulated the physiologically relevant ribonucleoprotein complex important for selenoprotein formation. Herein, we determined the stoichiometry of the human terminal synthetic complex of selenocysteine by using small angle x-ray scattering, multi-angle light scattering, and analytical ultracentrifugation. In addition, we provided the first estimate of the ratio between SepSecS and tRNASec in vivo. We show that SepSecS preferentially binds one or two tRNASec molecules at a time and that the enzyme is present in large molar excess over the substrate tRNA in vivo. Moreover, we show that in a complex between SepSecS and two tRNAs, one enzyme homodimer plays a role of the noncatalytic unit that positions CCA ends of two tRNASec molecules into the active site grooves of the other, catalytic, homodimer. Finally, our results demonstrate that the previously determined crystal structure represents the physiologically and catalytically relevant complex and suggest that allosteric regulation of SepSecS might play an important role in regulation of selenocysteine and selenoprotein synthesis.  相似文献   
24.
AlphaII-spectrin is a major cortical cytoskeletal protein contributing to membrane organization and integrity. The Ca2+-activated binding of calmodulin to an unstructured insert in the 11th repeat unit of alphaII-spectrin enhances the susceptibility of spectrin to calpain cleavage but abolishes its sensitivity to several caspases and to at least one bacterially derived pathologic protease. Other regulatory inputs including phosphorylation by c-Src also modulate the proteolytic susceptibility of alphaII-spectrin. These pathways, acting through spectrin, appear to control membrane plasticity and integrity in several cell types. To provide a structural basis for understanding these crucial biological events, we have solved the crystal structure of a complex between bovine calmodulin and the calmodulin-binding domain of human alphaII-spectrin (Protein Data Bank ID code 2FOT). The structure revealed that the entire calmodulin-spectrin-binding interface is hydrophobic in nature. The spectrin domain is also unique in folding into an amphiphilic helix once positioned within the calmodulin-binding groove. The structure of this complex provides insight into the mechanisms by which calmodulin, calpain, caspase, and tyrosine phosphorylation act on spectrin to regulate essential cellular processes.  相似文献   
25.
The proteome of a proliferating human stem cell line was analyzed and then utilized to detect stem cell differentiation-associated changes in the protein profile. The analysis was conducted with a stable human fetal midbrain stem cell line (ReNcell VM) that displays the properties of a neural stem cell. Therefore, acquisition of proteomic data should be representative of cultured human neural stem cells (hNSCs) in general. Here we present a 2-DE protein-map of this cell line with annotations of 402 spots representing 318 unique proteins identified by MS. The subsequent proteome profiling of differentiating cells of this stem cell line at days 0, 4 and 7 of differentiation revealed changes in the expression of 49 identified spots that could be annotated to 45 distinct proteins. This differentiation-associated expression pattern was validated by Western blot analysis for transgelin-2, proliferating cell nuclear antigen, as well as peroxiredoxin 1 and 4. The group of regulated proteins also included NudC, ubiquilin-1, STRAP, stress-70 protein, creatine kinase B, glial fibrillary acidic protein and vimentin. Our results reflect the large rearrangement of the proteome during the differentiation process of the stem cells to terminally differentiated neurons and offer the possibility for further characterization of specific targets driving the stem cell differentiation.  相似文献   
26.
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNAPyl and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNASec and Pyl-tRNAPyl formation as well as the distribution of the Pyl-decoding trait.  相似文献   
27.
In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1Thr and tRNA2Thr, that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2Thr and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5′-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that ‘reads’ the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands β4 and β5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1Thr.  相似文献   
28.
Mitochondrial inner membrane uncoupling proteins (UCPs) facilitate transmembrane (TM) proton flux and consequently reduce the membrane potential and ATP production. It has been proposed that the three neuronal human UCPs (UCP2, UCP4 and UCP5) in the central nervous system (CNS) play significant roles in reducing cellular oxidative stress. However, the structure and ion transport mechanism of these proteins remain relatively unexplored. Recently, we reported a novel expression system for obtaining functionally folded UCP1 in bacterial membranes and applied this system to obtain highly pure neuronal UCPs in high yields. In the present study, we report on the structure and function of the three neuronal UCP homologues. Reconstituted neuronal UCPs were dominantly helical in lipid membranes and transported protons in the presence of physiologically-relevant fatty acid (FA) activators. Under similar conditions, all neuronal UCPs also exhibited chloride transport activities that were partially inhibited by FAs. CD, fluorescence and MS measurements and semi-native gel electrophoresis collectively suggest that the reconstituted proteins self-associate in the lipid membranes. Based on SDS titration experiments and other evidence, a general molecular model for the monomeric, dimeric and tetrameric functional forms of UCPs in lipid membranes is proposed. In addition to their shared structural and ion transport features, neuronal UCPs differ in their conformations and proton transport activities (and possibly mechanism) in the presence of different FA activators. The differences in FA-activated UCP-mediated proton transport could serve as an essential factor in understanding and differentiating the physiological roles of UCP homologues in the CNS.  相似文献   
29.
The aim was to investigate the detection rates of periodontal bacteria (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans) and herpesviruses (herpes simplex virus-1 [HSV-1], cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) in different forms and severity of periodontal disease, and to compare them with those in periodontally healthy subjects. One hundred and twenty-nine patients participated in the study: 39 diagnosed with periodontal abscess (PA), 33 with necrotizing ulcerative periodontitis (NUP), 27 with chronic periodontitis (CP), and 30 participants with healthy periodontal tissue represented a healthy control group. All patients with periodontal disease (PA, NUP, and CP) were also divided into two groups according to the severity of their disease: moderate and severe periodontitis. The subgingival samples were collected from the periodontitis active sites and the detection of microorganisms was performed by end-point polymerase chain reaction analyses. The results revealed significantly higher detection rates of P. gingivalis, T. forsythia, and P. intermedia in all three groups of patients with periodontitis than in healthy participants. The highest detection rate of A. actinomycetemcomitans was noticed in CP, which was significantly higher than that in PA, NUP, and healthy control. The occurrence of EBV was significantly higher in NUP than in CP and healthy participants. CMV was detected significantly more frequently in PA and NUP than in CP and healthy participants. Comparisons among healthy participants and patients with moderate and severe periodontitis showed significantly higher detection rates of EBV and CMV in patients with severe forms of periodontitis than in healthy participants and those with moderate periodontitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号