首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   9篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   13篇
  2012年   23篇
  2011年   23篇
  2010年   10篇
  2009年   10篇
  2008年   13篇
  2007年   25篇
  2006年   13篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
41.
All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers.  相似文献   
42.
43.
? Plant genomes contain numerous disease resistance genes (R genes) that play roles in defense against pathogens. Scarcity of genetic polymorphism makes peanut (Arachis hypogaea) especially vulnerable to a wide variety of pathogens. ? Here, we isolated and characterized peanut bacterial artificial chromosomes (BACs) containing a high density of R genes. Analysis of two genomic regions identified several TIR-NBS-LRR (Toll-interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat) resistance gene analogs or gene fragments. We reconstructed their evolutionary history characterized by tandem duplications, possibly facilitated by transposon activities. We found evidence of both intergenic and intragenic gene conversions and unequal crossing-over, which may be driving forces underlying the functional evolution of resistance. ? Analysis of the sequence mutations, protein secondary structure and three-dimensional structures, all suggest that LRR domains are the primary contributor to the evolution of resistance genes. The central part of LRR regions, assumed to serve as the active core, may play a key role in the resistance function by having higher rates of duplication and DNA conversion than neighboring regions. The assumed active core is characterized by significantly enriched leucine residue composition, accumulation of positively selected sites, and shorter beta sheets. ? Homologous resistance gene analog (RGA)-containing regions in peanut, soybean, Medicago, Arabidopsis and grape have only limited gene synteny and microcollinearity.  相似文献   
44.
Genome duplication requires accessory helicases to displace proteins ahead of advancing replication forks. Escherichia coli contains three helicases, Rep, UvrD and DinG, that might promote replication of protein-bound DNA. One of these helicases, Rep, also interacts with the replicative helicase DnaB. We demonstrate that Rep is the only putative accessory helicase whose absence results in an increased chromosome duplication time. We show also that the interaction between Rep and DnaB is required for Rep to maintain rapid genome duplication. Furthermore, this Rep-DnaB interaction is critical in minimizing the need for both recombinational processing of blocked replication forks and replisome reassembly, indicating that colocalization of Rep and DnaB minimizes stalling and subsequent inactivation of replication forks. These data indicate that E. coli contains only one helicase that acts as an accessory motor at the fork in wild-type cells, that such an activity is critical for the maintenance of rapid genome duplication and that colocalization with the replisome is crucial for this function. Given that the only other characterized accessory motor, Saccharomyces cerevisiae Rrm3p, associates physically with the replisome, our demonstration of the functional importance of such an association indicates that colocalization may be a conserved feature of accessory replicative motors.  相似文献   
45.
Genome duplication requires not only unwinding of the template but also the displacement of proteins bound to the template, a function performed by replicative helicases located at the fork. However, accessory helicases are also needed since the replicative helicase stalls occasionally at nucleoprotein complexes. In Escherichia coli, the primary and accessory helicases DnaB and Rep translocate along the lagging and leading strand templates, respectively, interact physically and also display cooperativity in the unwinding of model forked DNA substrates. We demonstrate here that this cooperativity is displayed only by Rep and not by other tested helicases. ssDNA must be exposed on the leading strand template to elicit this cooperativity, indicating that forks blocked at protein-DNA complexes contain ssDNA ahead of the leading strand polymerase. However, stable Rep-DnaB complexes can form on linear as well as branched DNA, indicating that Rep has the capacity to interact with ssDNA on either the leading or the lagging strand template at forks. Inhibition of Rep binding to the lagging strand template by competition with SSB might therefore be critical in targeting accessory helicases to the leading strand template, indicating an important role for replisome architecture in promoting accessory helicase function at blocked replisomes.  相似文献   
46.

Background

Transforming growth factor (TGF)-β signaling pathway, may act both as a tumor suppressor and as a tumor promoter in pancreatic cancer, depending on tumor stage and cellular context. TGF-β pathway has been under intensive investigation as a potential therapeutic target in the treatment of cancer. We hypothesized a correlation between TGF-βR2/SMAD4 expression in the tumor, plasma TGF-β1 ligand level, genetic variation in TGF-B pathway and prognosis of pancreatic cancer.

Method

We examined TGF-βR2 and SMAD4 protein expression in biopsy or surgical samples from 91 patients with pancreatic ductal adenocarcinoma (PDAC) using immunohistochemistry. Plasma level of TGF-β1 was measured in 644 patients with PDAC using ELISA. Twenty-eight single nucleotide polymorphisms (SNP) of the TGF-β1, TGF-β2, TGF-β3, TGF-βR1, TGF-βR2, and SMAD4 genes were determined in 1636 patients with PDAC using the Sequenom method. Correlation between protein expression in the tumor, plasma TGF-β1 level, and genotypes with overall survival (OS) was evaluated with Cox proportional regression models.

Results

The expression level of TGF-βR2 and SMAD4 as an independent marker was not associated with OS. However, patients with both low nuclear staining of TGF-βR2 and high nuclear staining of SMAD4 may have better survival (P = 0.06). The mean and median level of TGF-β1 was 15.44 (SD: 10.99) and 12.61 (interquartile range: 8.31 to 19.04) ng/ml respectively. Patients with advanced disease and in the upper quartile range of TGF-β1 level had significantly reduced survival than those with low levels (P = 0.02). A significant association of SMAD4 SNP rs113545983 with overall survival was observed (P<0.0001).

Conclusion

Our data provides valuable baseline information regarding the TGF-β pathway in pancreatic cancer, which can be utilized in targeted therapy clinical trials. High TGF-β1 plasma level, SMAD4 SNP or TGF-βR2/SMAD4 tumor protein expression may suggest a dependence on this pathway in patients with advanced pancreatic cancer.  相似文献   
47.
48.
The synthesis of a new type of antagonist is described, capable of inactivating neuroreceptors with heretofore unattainable selectivity and permanence. These antagonists are referred to as mazek agonists (i.e. direct, inhibitory agonists) as they have the high receptor affinity and initial receptor-stimulatory effect of direct agonists and are positively coupled to effector systems. However, like direct antagonists, they have a high receptor affinity and the potential to inhibit or prevent receptor stimulation. The synthesis of the present compounds consisted of the covalent attachment of a tethered dye to three different neurotransmitter analogues, resulting in dye-neuropeptide conjugates with a high affinity for the FMRFa receptor. The dye was prepared from azure B (Az), the neurotransmitter was the neuropeptide FMRFamide (FMRFa), and the dye-neuropeptide conjugates synthesized were Az-CFMRFa; Az-CFMRF and Az-CLRFa. In this procedure, the analogues serve as carrier molecules, bound at one end to the receptor and at the other end to the dye, which is thereby brought into close contact with the receptor. The receptor can then be inactivated by singlet oxygen generated by laser irradiation of the photosensitized receptor.  相似文献   
49.
A new fungal pathogen was isolated from rotten pomegranates collected from the orchards of different parts of Maharashtra. The pathogen was morphologically identified as Chaetomella raphigera followed by sequencing of ITS and D1/D2 hypervariable region of LSU (28S) of rRNA gene. The pathogen produced pectinase, cellulase, xylanase and protease in liquid medium at a concentration of 71, 13.8, 54.3 and 7 U/ml respectively. Enzyme activity was also determined during pathogenesis in the tissues artificially infected by C. raphigera. Xylanase activity was maximum (25.1 U/g) followed by pectinase (19.2 U/g) and cellulase (1.5 U/g), whereas, protease activity was unnoticed. There was significant correlation (P < 0.05) between disease rating scale and pectinase, xylanase and cellulase activity in infected tissues. This indicates the simultaneous production of hydrolytic enzymes that aids in necrosis of fruit tissues. The elevated levels of these enzymes in infected tissues as compared with control suggest their possible role in pathogenesis. Thus, pectinase, cellulase and xylanase produced by C. raphigera acts as major virulence factors in the development of fruit rot in pomegranates. This is a first report of fungal fruit rot caused by C. raphigera in pomegranate.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号