全文获取类型
收费全文 | 1858篇 |
免费 | 162篇 |
专业分类
2020篇 |
出版年
2022年 | 15篇 |
2021年 | 27篇 |
2020年 | 15篇 |
2019年 | 29篇 |
2018年 | 16篇 |
2017年 | 21篇 |
2016年 | 31篇 |
2015年 | 55篇 |
2014年 | 80篇 |
2013年 | 93篇 |
2012年 | 85篇 |
2011年 | 93篇 |
2010年 | 46篇 |
2009年 | 42篇 |
2008年 | 76篇 |
2007年 | 69篇 |
2006年 | 65篇 |
2005年 | 65篇 |
2004年 | 43篇 |
2003年 | 50篇 |
2002年 | 71篇 |
2001年 | 43篇 |
2000年 | 45篇 |
1999年 | 32篇 |
1998年 | 28篇 |
1996年 | 25篇 |
1995年 | 22篇 |
1994年 | 14篇 |
1993年 | 17篇 |
1992年 | 26篇 |
1991年 | 36篇 |
1990年 | 36篇 |
1989年 | 36篇 |
1988年 | 39篇 |
1987年 | 26篇 |
1986年 | 41篇 |
1985年 | 37篇 |
1984年 | 26篇 |
1983年 | 33篇 |
1982年 | 14篇 |
1981年 | 18篇 |
1979年 | 22篇 |
1977年 | 14篇 |
1974年 | 31篇 |
1973年 | 17篇 |
1972年 | 24篇 |
1971年 | 20篇 |
1970年 | 16篇 |
1969年 | 16篇 |
1968年 | 17篇 |
排序方式: 共有2020条查询结果,搜索用时 0 毫秒
71.
Collins DM Murdoch H Dunlop AJ Charych E Baillie GS Wang Q Herberg FW Brandon N Prinz A Houslay MD 《Cellular signalling》2008,20(12):2356-2369
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA. 相似文献
72.
73.
Clarivel Lasalde Andrea V. Rivera Alfredo J. León José A. González-Feliciano Luis A. Estrella Eva N. Rodríguez-Cruz María E. Correa Iván J. Cajigas Dina P. Bracho Irving E. Vega Miles F. Wilkinson Carlos I. González 《Nucleic acids research》2014,42(3):1916-1929
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity. 相似文献
74.
L. J. Vitt S. S. Sartorius T. C. S. Avila-Pires M. C. Espósito D. B. Miles 《Oecologia》2000,122(3):410-420
We examined standard niche axes (time, place, and food) for three sympatric teiid lizards in the Amazon rain forest. Activity
times during the day were similar among species. Ameiva ameiva were in more open microhabitats and had higher body temperatures compared with the two species of Kentropyx. Microhabitat overlaps were low and not significantly different from simulations based on Monte Carlo analysis. Grasshoppers,
crickets, and spiders were important in the diets of all three species and many relatively abundant prey were infrequently
eaten (e.g., ants). Dietary overlaps were most similar between the two species of Kentropyx even though microhabitat overlaps were relatively low. A Monte Carlo analysis on prey types revealed that dietary overlaps
were higher at all ranks than simulated overlaps indicating that use of prey is not random. Although prey size was correlated
with lizard body size, there were no species differences in adjusted prey size. A. ameiva ate more prey items at a given body size than either species of Kentropyx. Body size varies among species, with A. ameiva being the largest and K. altamazonica the smallest. The two species of Kentropyx are most distant morphologically, with A. ameiva intermediate. The most distant species morphologically are the most similar in terms of prey types. A morphological analysis
including 15 species from four genera revealed patterns of covariation that reflected phylogenetic affinities (i.e., taxonomic
patterns are evident). A cluster analysis revealed that A. ameiva, K. pelviceps, and K. altamazonica were in the same morphological group and that within that group, A. ameiva differed from the rest of the species. In addition, K. pelviceps and K. altamazonica were distinguishable from other species of Kentropyx based on morphology.
Received: 26 December 1998 / Accepted: 15 September 1999 相似文献
75.
Nino Nikolovski Denis Rubtsov Marcelo P. Segura Godfrey P. Miles Tim J. Stevens Tom P.J. Dunkley Sean Munro Kathryn S. Lilley Paul Dupree 《Plant physiology》2012,160(2):1037-1051
The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.The Golgi apparatus is the central organelle in the secretory pathway, and in higher plants it is involved in the biosynthesis and transport of cell wall matrix polysaccharides, glycoproteins, proteoglycans, and glycolipids as well as in protein trafficking to different subcellular compartments. The last decade has produced substantial findings on the function of the Golgi apparatus: insights into the protein trafficking at the endoplasmic reticulum (ER)/Golgi interface, Golgi structural maintenance, its involvement in endocytosis, and its behavior during cell division (for review, see Faso et al., 2009). However, despite its importance, only a small proportion of the Golgi proteome has been studied: relatively few Golgi proteins have been localized, and even fewer have been functionally characterized.The Golgi apparatus is thought to contain a large and diverse group of membrane-bound glycosyltransferases (GTs). The current view is that different GT activities are required for synthesis of the linkage between different donor and acceptor sugars. Having in mind the diversity of linkage types found in cell wall polysaccharides, the number of different GTs involved is likely to be very large. For instance, it has been estimated that for the biosynthesis of pectin alone, the action of 65 different enzymatic activities is needed (Caffall and Mohnen, 2009). By the end of the year 2011, 468 Arabidopsis (Arabidopsis thaliana) sequences had been annotated in the Carbohydrate-Active EnZymes (CAZy) GT database (Cantarel et al., 2009; http://www.cazy.org). We estimate that two-thirds of these CAZy-classified GTs may be targeted to the Golgi. The remaining one-third are cytosolic or plastidic enzymes involved in processes including, secondary metabolism or starch synthesis. The reported sequences are classified into 43 CAZy families based on amino acid sequence similarities within which at least one member has been biochemically characterized. Each family is likely to have a common structural fold, and three-dimensional (3-D) structures have been resolved for 20 of these 43 families. These are divided mostly into two structural classes, having either a GT-A fold or a GT-B fold (Unligil and Rini, 2000; Bourne and Henrissat, 2001). Moreover, most of the structurally uncharacterized GT families are predicted to adopt either the GT-A or GT-B fold based on 3-D structural homology modeling (Coutinho et al., 2003; Lairson et al., 2008). Despite this conserved 3-D structure, different GT families have very low or undetectable sequence similarities. Consequently, predicting novel GTs based solely on their amino acid sequence similarities is not always achievable, and structural homology searches have also proven useful (Hansen et al., 2009).The length and properties of the transmembrane domain (TMD) of endomembrane proteins appear to play a role in protein sorting and location within the secretory pathway and can be used to predict protein localization (Hanton et al., 2005; Sharpe et al., 2010). In order to perform such predictions, a high number of experimentally localized proteins is required, but only limited data sets have been available for plants to date.In order to identify the most abundant CAZy-classified GTs as well as novel putative GTs, in this work we rigorously extended our proteomic studies of the Golgi apparatus. We have previously developed a high-throughput mass spectrometry (MS)-based quantitative proteomics technique for localization of organelle proteins by isotope tagging (LOPIT; Dunkley et al., 2004, 2006). Here, we report new LOPIT data sets and apply a new method of combining them with published LOPIT data sets, localizing an unprecedented number of plant organelle proteins. We have analyzed the TMD properties of the proteins assigned to the ER, Golgi, and plasma membrane (PM) and determined the organelle-specific features. Structural prediction analysis of the Golgi-localized proteins with unknown functions assessed the protein sequences for the potential to fold similarly to known GT structures. We found that the Golgi contains a substantial number of candidate GT families that have no characterized functions. These results yield a broader understanding of the Golgi function and its biochemical properties. 相似文献
76.
Many studies have shown that vaccines inducing CD8+ T cell responses can reduce viral loads and preserve CD4+ T cell numbers in monkey models of HIV infection. The mechanism of viral control by the vaccine-induced CD8+ T cells is usually assumed to be cytolysis of infected cells. However, in addition to cytolysis of infected cells, CD8+ T cells secrete a range of soluble factors that suppress viral replication. We have studied the dynamics of virus and CD4+ T cells in a successful vaccination-challenge model of SHIV infection. We find that better viral control in the acute phase of infection is associated with slower decay of peak viral load. Comparing viral and CD4+ T cell dynamics in acute infection, we find that a cytolytic mode of viral control with direct killing of infected cells is inconsistent with the observed trends. On the other hand, comparison of the predicted effects of noncytolytic CD8+ effector function with the experimental data shows that non-cytolytic control provides a better explanation of the experimental results. Our analysis suggests that vaccine-induced CD8+ T cells control SHIV infection by non-cytolytic means. 相似文献
77.
Thompson MD Takasaki J Capra V Rovati GE Siminovitch KA Burnham WM Hudson TJ Bossé Y Cole DE 《Molecular diagnosis & therapy》2006,10(6):353-366
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy. 相似文献
78.
Henry St?mpfli Michael Taylor Carl McNicoll Ady Y Gancz Peter D Constable 《Journal of applied physiology》2006,100(6):1831-1836
The quantitative mechanistic acid-base approach to clinical assessment of acid-base status requires species-specific values for [A]tot (the total concentration of nonvolatile buffers in plasma) and Ka (the effective dissociation constant for weak acids in plasma). The aim of this study was to determine [A]tot and Ka values for plasma in domestic pigeons. Plasma from 12 healthy commercial domestic pigeons was tonometered with 20% CO2 at 37 degrees C. Plasma pH, Pco2, and plasma concentrations of strong cations (Na, K, Ca), strong anions (Cl, L-lactate), and nonvolatile buffer ions (total protein, albumin, phosphate) were measured over a pH range of 6.8-7.7. Strong ion difference (SID) (SID5=Na+K+Ca-Cl-lactate) was used to calculate [A]tot and Ka from the measured pH and Pco2 and SID5. Mean (+/-SD) values for bird plasma were as follows: [A]tot=7.76+/-2.15 mmol/l (equivalent to 0.32 mmol/g of total protein, 0.51 mmol/g of albumin, 0.23 mmol/g of total solids); Ka=2.15+/-1.15x10(-7); and pKa=6.67. The net protein charge at normal pH (7.43) was estimated to be 6 meq/l; this value indicates that pigeon plasma has a much lower anion gap value than mammals after adjusting for high mean L-lactate concentrations induced by restraint during blood sampling. This finding indicates that plasma proteins in pigeons have a much lower net anion charge than mammalian plasma protein. An incidental finding was that total protein concentration measured by a multianalyzer system was consistently lower than the value for total solids measured by refractometer. 相似文献
79.
Jonathon E. Beves David J. Bray Jack K. Clegg Edwin C. Constable Catherine E. Housecroft Katrina A. Jolliffe Cameron J. Kepert Leonard F. Lindoy Markus Neuburger David J. Price Silvia Schaffner Frank Schaper 《Inorganica chimica acta》2008,361(9-10):2582-2590
The solid state structures of [Ni(1)2][NO3]2 · 2MeOH · 2H2O, [Fe(1)2][ClO4]2 · 2MeOH · 0.5H2O, [Ru(1)2][PF6]2 and [Ru(1)2][PF6][NO3] (1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine) are presented and the structural variation observed for the {M(1)2}2+ unit is discussed. Protonation of the pendant pyridine group in [Ru(1)2]2+ leads to the formation of a hydrogen-bonded, one-dimensional polymer [{Ru(1)(H1)}n]3n+ exemplifed by the solid-state structure of [{Ru(1)(H1)}{Fe(NCS)6} · 1.25H2O]n. 相似文献
80.