首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   37篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   14篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   37篇
  2014年   32篇
  2013年   37篇
  2012年   39篇
  2011年   30篇
  2010年   24篇
  2009年   17篇
  2008年   17篇
  2007年   30篇
  2006年   20篇
  2005年   12篇
  2004年   18篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1975年   2篇
  1974年   2篇
  1972年   5篇
  1968年   3篇
  1967年   4篇
  1919年   2篇
  1918年   2篇
  1914年   2篇
排序方式: 共有507条查询结果,搜索用时 31 毫秒
41.
5-Aminolevulinic acid (ALA), a heme precursor overproduced in various porphyric disorders, has been implicated in iron-mediated oxidative damage to biomolecules and cell structures. From previous observations of ferritin iron release by ALA, we investigated the ability of ALA to cause oxidative damage to ferritin apoprotein. Incubation of horse spleen ferritin (HoSF) with ALA caused alterations in the ferritin circular dichroism spectrum (loss of a alpha-helix content) and altered electrophoretic behavior. Incubation of human liver, spleen, and heart ferritins with ALA substantially decreased antibody recognition (51, 60, and 28% for liver, spleen, and heart, respectively). Incubation of apoferritin with 1-10mM ALA produced dose-dependent decreases in tryptophan fluorescence (11-35% after 5h), and a partial depletion of protein thiols (18% after 24h) despite substantial removal of catalytic iron. The loss of tryptophan fluorescence was inhibited 35% by 50mM mannitol, suggesting participation of hydroxyl radicals. The damage to apoferritin had no effect on ferroxidase activity, but produced a 61% decrease in iron uptake ability. The results suggest a local autocatalytic interaction among ALA, ferritin, and oxygen, catalyzed by endogenous iron and phosphate, that causes site-specific damage to the ferritin protein and impaired iron sequestration. These data together with previous findings that ALA overload causes iron mobilization in brain and liver of rats may help explain organ-specific toxicities and carcinogenicity of ALA in experimental animals and patients with porphyria.  相似文献   
42.
Milani M  Pesce A  Ouellet H  Guertin M  Bolognesi M 《IUBMB life》2003,55(10-11):623-627
Truncated hemoglobins (trHbs) build a separate subfamily within the hemoglobin superfamily; they are scarcely related by sequence similarity to (non-)vertebrate hemoglobins, displaying amino acid sequences in the 115-130 residue range. The trHb tertiary structure is based on a 2-on-2 alpha-helical sandwich, which hosts a unique hydrophobic cavity/tunnel system, traversing the protein matrix, from the molecular surface to the heme distal site. Such a protein matrix system may provide a path for diffusion of ligands to the heme. In Mycobacterium tuberculosis trHbN the heme-bound oxygen molecule is part of an extended hydrogen bond network including the heme distal residues TyrB10 and GlnE11. In vitro experiments have shown that M. tuberculosis trHbN supports efficiently nitric oxide dioxygenation, yielding nitrate. Such a reaction would provide a defense barrier against the nitrosative stress raised by host macrophages during lung infection. It is proposed that the whole protein architecture, the heme distal site hydrogen bonded network, and the unique protein matrix tunnel, are optimally designed to support the pseudo-catalytic role of trHbN in converting the reactive NO species into the harmless NO3-.  相似文献   
43.
Macrophage-generated oxygen- and nitrogen-reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis 'truncated hemoglobin' N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three-dimensional structure of oxygenated trHbN, solved at 1.9 A resolution, displays the two-over-two alpha-helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N-terminal alpha-helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for approximately 28 A through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress.  相似文献   
44.
45.
The stick insect Clonopsis gallica is a morphologically stable obligate parthenogen, ranging from North Africa to southern Europe, with a variable karyotype (54–57 chromosomes), considered diploid or triploid. Clonopsis gallica origin and relationships with Clonopsis algerica and Clonopsis maroccana remained unknown. Our Moroccan samples shared the same egg and body patterns and, in addition to C. gallica (2 n  = 54, XX), comprised the new bisexual Clonopsis sp. 1 (2 n  = 35/36, X0/XX) and the new all-female Clonopsis sp. 2 (2 n  = 72, XX), apparently forming a numerically polyploid series with re-diplodized karyotypes; C. gallica could thus be a triploid hybrid in origin. Furthermore, two strains of ameiotic males with 2 n  = 35 (X0) or 53 (X0) were found, which would maintain themselves as clonal androgens. We could conclude that in stick insects body and karyotype 'phenotypes' are considerably independent, thus preventing a sound taxonomy. Generally, the high heterozygosity of hybrids allows parthenogens to persist for long, particularly when hybrid polyploids are produced, as backcrosses of the hybrids to the parental species allow repeated incorporations of genetically diversified genomes. The distribution range of Clonopsis parthenogens appears to realize a sound instance of geographical parthenogenesis.  相似文献   
46.
47.
48.
To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins.  相似文献   
49.
50.
The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67phox, one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67phox membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号