首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   37篇
  2023年   3篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   14篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   37篇
  2014年   32篇
  2013年   37篇
  2012年   39篇
  2011年   30篇
  2010年   24篇
  2009年   17篇
  2008年   17篇
  2007年   30篇
  2006年   20篇
  2005年   12篇
  2004年   18篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1975年   2篇
  1974年   2篇
  1972年   5篇
  1968年   3篇
  1967年   4篇
  1919年   2篇
  1918年   2篇
  1914年   2篇
排序方式: 共有509条查询结果,搜索用时 16 毫秒
31.

Purpose

A life cycle assessment was conducted to determine a baseline for environmental impacts of cheddar and mozzarella cheese consumption. Product loss/waste, as well as consumer transport and storage, is included. The study scope was from cradle-to-grave with particular emphasis on unit operations under the control of typical cheese-processing plants.

Methods

SimaPro© 7.3 (PRé Consultants, The Netherlands, 2013) was used as the primary modeling software. The ecoinvent life cycle inventory database was used for background unit processes (Frischknecht and Rebitzer, J Cleaner Prod 13(13–14):1337–1343, 2005), modified to incorporate US electricity (EarthShift 2012). Operational data was collected from 17 cheese-manufacturing plants representing 24 % of mozzarella production and 38 % of cheddar production in the USA. Incoming raw milk, cream, or dry milk solids were allocated to coproducts by mass of milk solids. Plant-level engineering assessments of allocation fractions were adopted for major inputs such as electricity, natural gas, and chemicals. Revenue-based allocation was applied for the remaining in-plant processes.

Results and discussion

Greenhouse gas (GHG) emissions are of significant interest. For cheddar, as sold at retail (63.2 % milk solids), the carbon footprint using the IPCC 2007 factors is 8.60 kg CO2e/kg cheese consumed with a 95 % confidence interval (CI) of 5.86–12.2 kg CO2e/kg. For mozzarella, as sold at retail (51.4 % milk solids), the carbon footprint is 7.28 kg CO2e/kg mozzarella consumed, with a 95 % CI of 5.13–9.89 kg CO2e/kg. Normalization of the results based on the IMPACT 2002+ life cycle impact assessment (LCIA) framework suggests that nutrient emissions from both the farm and manufacturing facility wastewater treatment represent the most significant relative impacts across multiple environmental midpoint indicators. Raw milk is the major contributor to most impact categories; thus, efforts to reduce milk/cheese loss across the supply chain are important.

Conclusions

On-farm mitigation efforts around enteric methane, manure management, phosphorus and nitrogen runoff, and pesticides used on crops and livestock can also significantly reduce impacts. Water-related impacts such as depletion and eutrophication can be considered resource management issues—specifically of water quantity and nutrients. Thus, all opportunities for water conservation should be evaluated, and cheese manufacturers, while not having direct control over crop irrigation, the largest water consumption activity, can investigate the water use efficiency of the milk they procure. The regionalized normalization, based on annual US per capita cheese consumption, showed that eutrophication represents the largest relative impact driven by phosphorus runoff from agricultural fields and emissions associated with whey-processing wastewater. Therefore, incorporating best practices around phosphorous and nitrogen management could yield improvements.  相似文献   
32.
Recently, the Iberian stick insect genus Pijnackeria has been erected by splitting Leptynia Pantel on the basis of several distinguishing features. In addition to Pijnackeria hispanica, the tetraploid all‐female type species, molecular, karyological and SEM investigations led to the recognition of four bisexual and one triploid unisexual new species. Bisexuals' karyotypes (2n = 37/38) differ for minute traits and the haploid set is repeated, with few differences, three or four times in the polyploids that appeared to be of hybrid origin. Diagnostic morphological traits were found among body size parameters, antennal articles, male cerci, ovipositor valve and egg chorionic features. All species commonly feed on the broom Sarothamnus scoparius, but habitat disturbance appeared to induce food plant shifts. Moreover, trends from bisexuality to unisexuality through spanandry, probably related to habitat disruption, have been witnessed. The diploid species (Pijnackeria lucianae, Pijnackeria barbarae, Pijnackeria lelongi and Pijnackeria originis) have small ranges, while the polyploid hybrids (Pijnackeria masettii and P. hispanica) spread through Spain and Southern France, featuring a clear geographic parthenogenesis scenario, by colonizing wide areas and likely displacing their ancestors, or even leading them to extinction. Cyclic climatic changes and natural or anthropic habitat fragmentation may have been also of relevance in shaping present‐day distribution.  相似文献   
33.
Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota.  相似文献   
34.
35.
36.
As technologically important materials for solid‐state batteries, Li super‐ionic conductors are a class of materials exhibiting exceptionally high ionic conductivity at room temperature. These materials have unique crystal structural frameworks hosting a highly conductive Li sublattice. However, it is not understood why certain crystal structures of the super‐ionic conductors lead to high conductivity in the Li sublattice. In this study, using topological analysis and ab initio molecular dynamics simulations, the crystal structures of all Li‐conducting oxides and sulfides are studied systematically and the key features pertaining to fast‐ion conduction are quantified. In particular, a unique feature of enlarged Li sites caused by large local spaces in the crystal structural framework is identified, promoting fast conduction in the Li‐ion sublattice. Based on these quantified features, the high‐throughput screening identifies many new structures as fast Li‐ion conductors, which are further confirmed by ab initio molecular dynamics simulations. This study provides new insights and a systematic quantitative understanding of the crystal structural frameworks of fast ion‐conductor materials and motivates future experimental and computational studies on new fast‐ion conductors.  相似文献   
37.
38.
In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L −1 (0.088 mM) naringenin or 112 mg·L −1 (0.49 mM) resveratrol from glucose without supplementation of phenylpropanoid precursor molecules or any inhibitors of fatty acid synthesis.  相似文献   
39.
The most prevalent malignancy in the oral cavity is represented by oral squamous cell carcinoma, an aggressive disease mostly detected in low-income communities. This neoplasia is mostly diffused in older men particularly exposed to risk factors such as tobacco, alcohol, and a diet rich in fatty foods and poor in vegetables. In oral squamous cell carcinoma, a wide range of matrix-cleaving proteinases are involved in extracellular matrix remodeling of cancer microenvironment. In particular, matrix metalloproteinases (MMPs) represent the major and most investigated protagonists. Owing to their strong involvement in malignant pathologies, MMPs are considered the most promising new biomarkers in cancer diagnosis and prognosis. The interest in studying MMPs in oral cancer biology is also owing to their prominent role in epithelial-to-mesenchymal transition (EMT). EMT is an intricate process involving different complex pathways. EMT-related proteins are attractive diagnostic biomarkers that characterize the activation of biological events that promote cancer's aggressive expansion. Different antioncogenic natural compounds have been investigated to counteract oral carcinogenesis, with the scope of obtaining better clinical results and lower morbidity. In particular, we describe the role of different nutraceuticals used for the regulation of MMP-related invasion and proliferation of oral cancer cells.  相似文献   
40.
Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells’ (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.Subject terms: Breast cancer, Cancer stem cells  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号