首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1672篇
  免费   111篇
  2023年   17篇
  2022年   14篇
  2021年   28篇
  2020年   21篇
  2019年   30篇
  2018年   44篇
  2017年   42篇
  2016年   42篇
  2015年   69篇
  2014年   86篇
  2013年   86篇
  2012年   110篇
  2011年   115篇
  2010年   77篇
  2009年   52篇
  2008年   93篇
  2007年   89篇
  2006年   98篇
  2005年   95篇
  2004年   94篇
  2003年   68篇
  2002年   60篇
  2001年   24篇
  2000年   15篇
  1999年   27篇
  1998年   16篇
  1997年   22篇
  1996年   17篇
  1995年   20篇
  1994年   15篇
  1993年   8篇
  1992年   12篇
  1991年   6篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1981年   12篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1973年   7篇
  1967年   7篇
  1966年   5篇
  1965年   5篇
排序方式: 共有1783条查询结果,搜索用时 281 毫秒
991.
New Delhi metallo-β-lactamase producing Pseudomonas aeruginosa isolates are of special interest since P. aeruginosa is a major cause of nosocomial infections, the treatment of which could now be jeopardized, especially in developing countries. Six additional NDM-1 positive P. aeruginosa clinical isolates belonging to two different genotypes were shown to be plasmid-free. PFGE-hybridization experiments revealed the chromosomal location of the bla NDM-1 gene. Restriction analysis and hybridization revealed that two copies of the bla NDM-1 gene are present in the genomes of all tested isolates, as in previously characterized P. aeruginosa MMA83. Moreover, it was shown that increasing imipenem concentration did not have the effect on copy number of the bla NDM-1 gene in the genome of P. aeruginosa MMA83.  相似文献   
992.
993.
994.
Previous studies have shown that single amino acid changes in the amino-terminal matrix (MA) domain, p17, of the human immunodeficiency virus type 1 Gag precursor Pr55, can abrogate virion particle assembly. In the three-dimensional structure of MA such mutations lie in a single helix spanning residues 54 to 68, suggesting a key role for this helix in the assembly process. The fundamental nature of this involvement, however, remains poorly understood. In the present study, the essential features of the MA helix required for virus assembly have been investigated through the analysis of a further 15 site-directed mutants. With previous mutants that failed to assemble, residues mapped as critical for assembly were all located on the hydrophobic face of the helix and had a key role in stabilizing the trimeric interface. This implies a role for the MA trimer in virus assembly. We support this interpretation by showing that purified MA is trimeric in solution and that mutations that prevent virus assembly also prevent trimerization. Trimerization in solution was also a property of a larger MA-capsid (CA) Gag molecule, while under the same conditions CA only was a monomer. These data suggest that Gag trimerization driven by the MA domain is an intermediate stage in normal virion assembly and that it relies, in turn, on an MA conformation dependent on the hydrophobic core of the molecule.  相似文献   
995.
996.
Over the last decade the zebrafish has emerged as a major genetic model organism. While stimulated originally by the utility of its transparent embryos for the study of vertebrate organogenesis, the success of the zebrafish was consolidated through multiple genetic screens, sequencing of the fish genome by the Sanger Center, and the advent of extensive genomic resources. In the last few years the potential of the zebrafish for in vivo cell biology, physiology, disease modeling and drug discovery has begun to be realized. This review will highlight work on cardiac electrophysiology, emphasizing the arenas in which the zebrafish complements other in vivo and in vitro models; developmental physiology, large-scale screens, high-throughput disease modeling and drug discovery. Much of this work is at an early stage, and so the focus will be on the general principles, the specific advantages of the zebrafish and on future potential.  相似文献   
997.
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD+ as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD+, the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD+ and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.  相似文献   
998.
Posttranslational modifications (PTMs) of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the ‘histone code’. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS):tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.  相似文献   
999.
Only two mitochondrial haplotypes (Korea and Japan) of Varroa destructor, the ectoparasitic honey bee mite, are known to be capable of infesting and successfully reproducing in Apis mellifera colonies worldwide. Varroa destructor (then called Varroa jacobsoni) was observed in Serbia for the first time in 1976. In order to obtain insight into the genetic variability of the mites parasitizing A. mellifera we analyzed 45 adult female mites sampled from nine localities dispersed throughout Serbia. Four fragments within cox1, atp6, cox3 and cytb mtDNA genes were sequenced. The Korea haplotype of V. destructor was found to be present at all localities, but also two new haplotypes (Serbia 1 and Peshter 1) were revealed, based on cox1 and cytb sequence variability. The simultaneous occurrence of Korea and Serbia 1 haplotypes was observed at five localities, whereas Peshter 1 haplotype was identifed at only one place.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号