首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   13篇
  2024年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   11篇
  2015年   12篇
  2014年   16篇
  2013年   24篇
  2012年   25篇
  2011年   20篇
  2010年   18篇
  2009年   10篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   23篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1975年   1篇
排序方式: 共有277条查询结果,搜索用时 31 毫秒
71.
Aryl-alcohol oxidase (AAO) is a FAD-containing enzyme in the GMC (glucose-methanol-choline oxidase) family of oxidoreductases. AAO participates in fungal degradation of lignin, a process of high ecological and biotechnological relevance, by providing the hydrogen peroxide required by ligninolytic peroxidases. In the Pleurotus species, this peroxide is generated in the redox cycling of p-anisaldehyde, an extracellular fungal metabolite. In addition to p-anisyl alcohol, the enzyme also oxidizes other polyunsaturated primary alcohols. Its reaction mechanism was investigated here using p-anisyl alcohol and 2,4-hexadien-1-ol as two AAO model substrates. Steady state kinetic parameters and enzyme-monitored turnover were consistent with a sequential mechanism in which O2 reacts with reduced AAO before release of the aldehyde product. Pre-steady state analysis revealed that the AAO reductive half-reaction is essentially irreversible and rate limiting during catalysis. Substrate and solvent kinetic isotope effects under steady and pre-steady state conditions (the latter showing ∼9-fold slower enzyme reduction when α-bideuterated substrates were used, and ∼13-fold slower reduction when both substrate and solvent effects were simultaneously evaluated) revealed a synchronous mechanism in which hydride transfer from substrate α-carbon to FAD and proton abstraction from hydroxyl occur simultaneously. This significantly differs from the general mechanism proposed for other members of the GMC oxidoreductase family that implies hydride transfer from a previously stabilized substrate alkoxide.Wood and other lignocellulosic materials are the main source of renewable materials in earth. White-rot basidiomycetes are essential contributors to carbon cycling in forest and other land ecosystems because of their ability to degrade lignocellulose to carbon dioxide and water. This ability confers to these fungi and their ligninolytic enzymes high interest in industrial processes, such as bioethanol production and paper pulp manufacturing, where the removal of lignin is a previous and essential step to use the cellulose present in plant biomass as a source for renewable fuels, chemicals, and materials (1).Aryl-alcohol oxidase (AAO)5 is an extracellular FAD-containing enzyme (2) that, in collaboration with myceliar aryl-alcohol dehydrogenases, participates in lignin degradation by some white-rot fungi, such as Pleurotus (and Bjerkandera) species, by generating hydrogen peroxide in the redox cycling of aromatic fungal metabolites, such as p-anisaldehyde (3, 4). Fungal high redox-potential peroxidases catalyze the oxidative degradation of lignin by this extracellular peroxide (5).AAO was cloned for the first time in Pleurotus eryngii (6), a fungus of biotechnological interest because of its ability to degrade lignin selectively (7). The AAO amino acid sequence revealed moderate homology with glucose oxidase from Aspergillus niger (8), a flavoenzyme in the glucose-methanol-choline oxidases (GMC) oxidoreductase family. The reported molecular model of AAO (9), based on the glucose oxidase crystal structure (10), showed common features with the overall structural topology of bacterial choline oxidase and almond hydroxynitrile lyase (a lyase with oxidoreductase structure), as well as with other members of the GMC family; such as the extracellular flavoenzymes pyranose-2-oxidase and cellobiose dehydrogenase from white-rot basidiomycetes, and bacterial cholesterol oxidase (1115). In particular, P. eryngii AAO conserves two histidine residues, His-502 and His-546 (supplemental Fig. S1), involved in catalysis in different members of this family (the second residue is an asparagine in some of them) (9).Non-glycosylated P. eryngii AAO expressed in Escherichia coli (16) is used for further characterization studies. The enzyme catalyzes the oxidative dehydrogenation of unsaturated alcohols with a primary hydroxyl at Cα, exhibiting broad substrate specificity. In addition to benzyl alcohols, its active site also binds and oxidizes aliphatic polyunsaturated primary alcohols (such as 2,4-hexadien-1-ol), naphthyl, and cinnamyl alcohols, and shows low activity on some aromatic aldehydes (17). Methanol and other saturated alcohols are not AAO substrates, and the monounsaturated allyl alcohol is very slowly oxidized (2).It is suggested that the AAO catalytic mechanism proceeds via electrophilic attack and direct transfer of a hydride to the flavin (17). A recent mutational study confirmed the strict requirement for catalysis of His-502 and His-546 located near the isoalloxazine ring of FAD (supplemental Fig. S1), as well as the involvement of two aromatic residues (18). Here we present the first study on the reaction mechanism of AAO in which substrate and solvent kinetic isotope effect (KIE), in combination with bisubstrate steady state and pre-steady state kinetic approaches, have been used to investigate the mechanism of polyunsaturated primary alcohol oxidation by AAO. Its natural substrate, p-anisyl alcohol, as well as a structurally different (non-aromatic) AAO substrate, 2,4-hexadien-1-ol, were chosen as two models for the different AAO alcohol substrates.  相似文献   
72.
Ferredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2'-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2'-P-AMP and NADP(+) allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR.  相似文献   
73.
The stable, low-molecular-weight (LMW) RNA fractions of several rhizobial isolates of Phaseolus vulgaris grown in the soil of Lanzarote, an island of the Canary Islands, were identical to a less-common pattern found within Sinorhizobium meliloti (assigned to group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northern Spain. The P. vulgaris isolates and the group II LMW RNA S. meliloti isolates also were distinguishable in that both had two conserved inserts of 20 and 46 bp in the 16S-23S internal transcribed spacer region that were not present in other strains of S. meliloti. The isolates from P. vulgaris nodulated bean but not Medicago sativa, while those recovered from Medicago, Melilotus, and Trigonella spp. nodulated both host legumes. The bean isolates also were distinguished from those of Medicago, Melilotus, and Trigonella spp. by nodC sequence analysis. The nodC sequences of the bean isolates were most similar to those reported for S. meliloti bv. mediterranense and Sinorhizobium fredii bv. mediterranense (GenBank accession numbers DQ333891 and AF217267, respectively). None of the evidence placed the bean isolates from Lanzarote in the genus Rhizobium, which perhaps is inconsistent with seed-borne transmission of Rhizobium etli from the Americas to the Canaries as an explanation for the presence of bean-nodulating rhizobia in soils of Lanzarote.A remarkable attribute of Phaseolus vulgaris (common bean) is its ability to nodulate with rhizobia from at least 20 different legume genera (summarized in reference 1). Of particular relevance is the report by Ishizawa (16), who described P. vulgaris nodulation ranging from doubtful to good by 14 strains recovered from Medicago sativa, Medicago denticulata, and Melilotus alba, while nodulation of the latter three legumes by four bean strains was negative.At the time of the host range experiments, such as those described by Ishizawa (16), rhizobial nomenclature depended on the legume host of origin; the taxonomy of the strains was based on cross-inoculation groups. Consequently, no information was available about the genetic relationships among the rhizobial strains that originated from the different host legume genera and formed nodules on P. vulgaris. Eventually, rhizobial nomenclature based on the cross-inoculation groups was abandoned because of the many unexplainable and incongruous nodulation data (44). The cross-inoculation groups consisted of different rhizobial species within the single genus Rhizobium. Eventually, rhizobial taxonomy was expanded to several different genera based on estimates of their phylogeny (38). Phylogenies of bean-nodulating rhizobia were estimated from variations in the 16S rRNA gene sequence (39), even though subsequently it became clear that this method is significantly limited by histories of genetic exchange and recombination (6, 40). Most reported phylogenies of rhizobia nodulating P. vulgaris have placed them in the genus Rhizobium (3, 39), but several surveys with isolates from North Africa and Spain have demonstrated that rhizobia in the genus Sinorhizobium also nodulate this legume species (12, 23, 24, 25, 41), supporting the nodulation data originally published by Ishizawa (16). The number of isolates described as originating from nodules of P. vulgaris in the genus Sinorhizobium is small, and for the most part, from the published evidence, it has been suggested that they are affiliated with Sinorhizobium fredii. However, nodules of P. vulgaris growing in a single Tunisian soil where beans are cultivated yielded four isolates that, according to the data, appeared to support an affiliation with Sinorhizobium meliloti rather than S. fredii (25). Whether these four cultures were of the same rhizobial genotype constituting a single example of S. meliloti isolated from P. vulgaris is unknown.P. vulgaris was introduced into Europe as a crop plant as early as the 16th century (31) but never became a very important part of agriculture in Lanzarote, one of the Canary Islands that lie in the Atlantic Ocean to the west of the North African coast. Since there is no record of any nodulation studies with P. vulgaris cultivated on Lanzarote Island, the first objective of this study was to examine bean plants that had grown in Lanzarote soil for nodulation. Considering that the diversity of rhizobia able to nodulate bean plants is extremely wide, the second objective was to characterize the isolates originating from the nodules of plants grown in Lanzarote soil.(Part of this work was presented as a poster at the First International Meeting on Microbial Phosphate Solubilization, Salamanca, Spain, July 2002.)  相似文献   
74.
In sessile marine organisms, gene flow between populations depends mainly on free-living reproductive stages (such as larvae and gametes), and usually the strength of genetic structure is related to the time spent in the plankton and physical factors as oceanographic conditions. In Antarctica, abyssal depths that surround the continent and the Polar Front are considered strong barriers for benthic marine fauna, keeping the continent isolated from other shelves. The only available shallow water habitats between South America and the Antarctic continent are those around the Scotia Arc Islands; there are no shallow water habitats between the other southern continents and Antarctica. In this work, ISSRs-PCR markers were used to study the genetic structure of populations of Aplidium falklandicum, a compound ascidian with short-lived lecitotrophic larvae. A highly significant genetic differentiation (ΦST = 0.405; P < 0.05) and a pattern of isolation by distance were found. A genetic landscape approach identified a discontinuity in genetic diversity, coincident with the southernmost registered position of the Polar Front. For A. falklandicum, a species with presumably low capacity of long distance dispersal, the abyssal depths together with the large geographic distances create a barrier for gene flow.  相似文献   
75.
In this work we analysed different chromosomal and symbiotic markers in rhizobial strains nodulating Lupinus albus (white lupin) in several continents. Collectively the analysis of their rrs and atpD genes, and 16S-23S intergenic spacers (ITS), showed that they belong to at least four chromosomal lineages within the genus Bradyrhizobium. Most isolates from the Canary Islands (near to the African continent) grouped with some strains isolated on mainland Spain and were identified as Bradyrhizobium canariense. These strains are divided into two ITS subgroups coincident with those previously described from isolates nodulating Ornithopus. The remaining strains isolated on mainland Spain grouped with most isolates from Chile (American continent) forming a new lineage related to Bradyrhizobium japonicum. The strains BLUT2 and ISLU207 isolated from the Canary Islands and Chile, respectively, formed two new lineages phylogenetically close to different species of Bradyrhizobium depending on the marker analyzed. The analysis of the nodC gene showed that all strains nodulating L. albus belong to the biovar genistearum; nevertheless they form four different nodC lineages of which lineage C is at present exclusively formed by L. albus endosymbionts isolated from different continents.  相似文献   
76.
77.
78.

Background

The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months.

Results

In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on immunized cattle that showed anti-Bm86 specific titers in the range of 1:640 to 1:81920.

Conclusion

The administration of two initial doses of Gavacplus containing 100 μg of Bm86 antigen to non-immunized cattle under production conditions is sufficient to affect the weight and the reproductive capacity of R. microplus engorging females. According to these results, cattle herds' manipulation and vaccine costs could be potentially reduced with a positive impact on the implementation of integrated control programs against R. microplus.  相似文献   
79.
Pt-containing drugs are nowadays essential components in cancer chemotherapy. However, drug resistance and side effects limit the efficiency of the treatments. In order to improve the response to Pt-based drugs, different administration strategies or new Pt-compounds have been developed with little success. The reason for this failure could be that the mechanism of action of these drugs is not completely understood. In this way, metallomics studies may contribute to clarify the interactions of Pt-containing drugs within the organism. This review is mainly focused on the role of Analytical Chemistry on the study of the interactions between Pt-based drugs and biomolecules. A summary of the analytical techniques and the most common sample treatment procedures currently used in metallomics studies of these drugs is presented. Both are of paramount importance to study these complex samples preserving the drug-biomolecule interaction. Separation and detection techniques must be carefully selected in order to achieve the intended goals. The use of multidimensional hyphenated techniques is usually necessary for a better understanding of the Pt-based drugs interactions in the organism. An overview of Pt-drugs biological interactions is presented, considering the different sample matrices and the drugs course through the organism. Samples analysed in the included studies are blood, urine, cell cytosol, DNA as well as the drugs themselves and their derivatives. However, most of these works are based on in vitro experiments or incubations of standards, leading in some cases to contradictory results depending on the experimental conditions used. Though in vivo experiments represent a great challenge due to the high complexity and the low concentrations of the Pt-adducts in real samples, these studies must be undertaken to get a deeper understanding of the real interactions concerning Pt-containing drugs.  相似文献   
80.
The aim of this study was to determine the in vitro susceptibility of amphotericin B, fluconazole and itraconazole, to several Candida spp recovered from blood cultures on hospitalized patients at the University Hospital of Maracaibo, Venezuela. The determination of the antifungal susceptibility was carried out according to the microdilution method in broth developed by The European Committee for Antimicrobial Susceptibility Testing (EUCAST). The profile of susceptibility of the 74 isolates showed that all the studied species were susceptible to amphotericin B, and 97.2% and 89.2% to fluconazole and itraconazole, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号