首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   20篇
  177篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   10篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   14篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
51.
Developmental delay and intellectual disability, which occur in 1–3% of the population, account for a large number of the cases regularly seen in genetic units. Chromosomal microarray analysis has been shown to be a valuable clinical diagnostic assay and it should be the first-tier clinical diagnostic test for individuals with these conditions. However and due to several difficulties such as the platform resolution, the cost, and the inexperience with genomic data bases, the implementation of this test in many cytogenetic laboratories has been delayed. In an attempt to provide more insights of the benefits derived by using the chromosomal microarray analysis, this study presents the experience of two clinical centers using three different microarray platforms. The results obtained using a custom microarray (KaryoArray®) and two different commercial medium- and high-resolution whole-genome oligonucleotide microarrays have been compared. An overall diagnostic yield of around 15% has been obtained. However, the custom microarray platform has been shown to be more convenient for a clinical setting, since it allows the detection of more pathogenic copy number variants and less common variants.  相似文献   
52.
Fibromyalgia is a chronic condition characterized by widespread pain, fatigue, non-restorative sleep and cognitive difficulties that affects 2–4% of the general population. Recently a possible relationship between the FMR1 premutation and fibromyalgia has been pointed out. In attempt to gather more data we screened for the FMR1 CGG expansion 700 DNA samples from unrelated fibromyalgia patients. This data might be useful for evaluating the incorporation of this test in rheumatologic procedures for women with fibromyalgia. The observed frequency of FMR1 premutation carriers (3 of 700, 0.4%) is not significantly different from the estimated rate in the general female population (1/250–1/400) (P = 0.539, P = 0.716). Clinical examination of the FMR1 premutation carriers identified revealed that all of them had important neurological symptoms with regard to muscular symptoms, neurocognitive alterations and neurovegetative impairments. With regard to other clinical aspects of the disease the cases apparently did not differ from the average fibromyalgia patients. On the basis of our results an FMR1 screening among fibromyalgia female patients would not be recommended. However it would be worthwhile to further evaluate the different clinical presentations that fibromyalgia patients might present based on their FMR1 premutation carrier status.  相似文献   
53.
54.
Jaburetox is a recombinant peptide derived from one of the Canavalia ensiformis urease isoforms. This peptide induces several toxic effects on insects of different orders, including interference on muscle contractility in cockroaches, modulation of UDP-N-acetylglucosamine pyrophosphorylase (UAP) and nitric oxide synthase (NOS) activities in the central nervous system of triatomines, as well as activation of the immune system in Rhodnius prolixus. When injected, the peptide is lethal for R. prolixus and Triatoma infestans. Here, we evaluated Jaburetox toxicity to Nauphoeta cinerea cockroaches, exploring the effects on the central nervous system through the activities of UAP, NOS, acid phosphatases (ACP), and acetylcholinesterase (AChE). The results indicated that N. cinerea is not susceptible to the lethal effect of the peptide. Moreover, both in vivo and in vitro treatments with Jaburetox inhibited NOS activity, without modifying the protein levels. No alterations on ACP activity were observed. In addition, the enzyme activity of UAP only had its activity affected at 18 hr after injection. The peptide increased the AChE activity, suggesting a mechanism involved in overcoming the toxic effects. In conclusion, our findings indicate that Jaburetox affects the nitrinergic signaling as well as the AChE and UAP activities and establishes N. cinerea as a Jaburetox-resistant model for future comparative studies.  相似文献   
55.
NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To investigate the temporal changes in NG2 cell fate, we generated NG2creER?BAC transgenic mice, in which tamoxifen-inducible Cre is expressed in NG2 cells. Cre induction at embryonic day 16.5, postnatal day (P) 2, P30 and P60 in mice that were double transgenic for NG2creER?BAC and the Cre reporter revealed that NG2 cells in the postnatal brain generate only NG2 cells or oligodendrocytes, whereas NG2 cells in the embryonic brain generate protoplasmic astrocytes in the gray matter of the ventral forebrain in addition to oligodendrocytes and NG2 cells. Analysis of cell clusters from single NG2 cells revealed that more than 80% of the NG2 cells in the P2 brain give rise to clusters consisting exclusively of oligodendrocytes, whereas the majority of the NG2 cells in the P60 brain generate clusters that contain only NG2 cells or a mixture of oligodendrocytes and NG2 cells. Furthermore, live cell imaging of single NG2 cells from early postnatal brain slices revealed that NG2 cells initially divide symmetrically to produce two daughter NG2 cells and that differentiation into oligodendrocytes occurred after 2-3 days.  相似文献   
56.
57.
Hox genes are re-expressed during regeneration in many species. Given their important role in body plan development, it has been assumed, but not directly shown, that they play a functional role in regeneration. In this paper we show that morpholino-mediated knockdown of either Hoxc13a or Hoxc13b during the process of zebrafish tail fin regeneration results in a significant reduction of regenerative outgrowth. Furthermore, cellular proliferation within the blastema is directly affected in both knockdowns. Hence, similar to the demonstration of unique functions of multiple Hox genes during limb formation, both Hoxc13 orthologs have distinct functions in regeneration.  相似文献   
58.
The aim of the present study was to identify proteins differentially regulated by TRPS1 in human prostate cancer cells in order to better understand the role of TRPS1 in prostate cancer development. The proteomes of androgen-independent DU145 prostate cancer cells, that do not express TRPS1 and of genetically engineered DU145 cells that stable and inducible express recombinant TRPS1 protein, were compared. Using two-dimensional electrophoresis followed by mass spectrometric analysis, 13 proteins that were differentially expressed between these two cell lines were identified. These proteins represent a dominant reduction of expression of antioxidant proteins, including superoxide dismutase, protein disulfide isomerase A3 precursor, endoplasmin precursor and annexin A2. Furthermore, regulation was observed for mitochondrion-associated proteins, glycolytic enzymes, a cytoskeleton-associated protein, a nuclear protein and proteins involved in apoptosis. Our data indicate that overexpression of TRPS1 protein is correlated with reduced protein expression of certain antioxidants. This suggests a possible involvement of TRPS1 in oxidative stress, and possibly in apoptosis in androgen-independent DU145 prostate cancer cells.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号