首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   35篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   12篇
  2016年   6篇
  2015年   8篇
  2014年   17篇
  2013年   12篇
  2012年   24篇
  2011年   18篇
  2010年   22篇
  2009年   9篇
  2008年   11篇
  2007年   13篇
  2006年   13篇
  2005年   28篇
  2004年   13篇
  2003年   10篇
  2002年   15篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   7篇
  1973年   2篇
  1972年   7篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有348条查询结果,搜索用时 921 毫秒
91.
Cellular protection against oxidative stress is afforded by the enzyme superoxide dismutase (SOD). In this study, the protein levels of copper–zinc SOD (CuZnSOD) in the cytosolic and nuclear fraction, manganese SOD (MnSOD) in the mitochondrial, and cytosolic fraction and cytochrome c (cyt c) in the liver of male rats exposed to 2 h of acute immobilization (IM) or Cold stress, 21 days chronic isolation or their combinations (chronic/acute stress) were examined. The serum corticosterone (CORT) level was measured, as an indicator of stress stimuli. Both acute stressors with elevated CORT levels caused a decrease of mitochondrial MnSOD, while acute IM resulted in redistribution of the CuZnSOD protein level between the cytosolic and nuclear fraction. Chronic isolation, during which the CORT level was close to control value, resulted in an increase of cytosolic CuZnSOD, whereas a decrease of MnSOD in mitochondrial and its corresponding increase in cytosol fraction was found. In both combined stress regimes, an increase of the CuZnSOD and MnSOD levels in the cytosolic fraction was recorded whereby increase of the CORT level was observed only in the chronic isolation followed by acute IM. The data indicate that acute and/or chronic stress models have different degrees of influence on serum CORT and SOD subcellular protein levels. Increased cytosolic CuZnSOD protein level under chronic isolation suggests that state of oxidative stress may also exist under CORT level similar to the basal value. The presence of MnSOD and cyt c in the cytosolic fraction could serve as useful parameters for mitochondrial dysfunction.  相似文献   
92.
All physico-chemical parameters that affect bacterial growth rate will also affect bacterial molecular composition, which in turn influences the chemical composition of bacterial lysate and its turnover rate in the ecosystem. To produce qualitatively different lysates, Vibrio sp. cells were grown under different pH, salt, or temperature conditions in rich growth media and then washed and lysed by autoclaving. Both the absolute concentrations and the ratios between elements in the lysates varied with different growth conditions, implying differences in lysate quality. Either Pseudoalteromonas sp. or Vibrio sp. was grown on the lysates at non-limiting lysate concentrations. Different lysates supported growth rates of Pseudoalteromonas sp. in the range from 0.25 to 1.53 h−1. On the other hand, growth rates of Vibrio sp. grown on its own lysates were around 0.4 h−1 and were not dependent on lysate quality. Two orders of magnitude decrease in Zn concentration in Vibrio sp. cells grown on different lysates as compared to cells grown on rich growth medium suggested that Zn might be a factor limiting growth. In the simple microbial loop studied, the initial difference in lysate quality was preserved in Pseudoalteromonas sp., whereas Vibrio sp. decreased the initial differences in lysate quality, thereby neutralizing the primary effect of environmental conditions on carbon turnover.  相似文献   
93.
Methylglyoxal (MG), a reactive α-oxoaldehyde that is produced in higher quantities in diabetes, uremia, oxidative stress, aging and inflammation, reacts with the thiol groups (in addition to the amino and guanidino groups) of proteins. This causes protein modification, formation of advanced glycated end products (AGEs) and cross-linking. Low molecular mass thiols can be used as competitive targets for MG, preventing the reactions mentioned above. Therefore, this paper investigated how the microenvironment of the thiol group in low molecular mass thiols (cysteine, N-acetylcysteine (NAcCys), carboxymethylcysteine (CMC) and glutathione (GSH)) and human serum albumin (HSA) affected the thiol reaction with MG. The SH group reaction course was monitored by 1H-NMR spectroscopy and spectrophotometric quantification. Changes in the HSA molecules were monitored by SDS-PAGE. The microenvironment of the SH group had a major effect on its reactivity and on the product yield. The reactivity of SH groups decreased in the order Cys > GSH > NAcCys. CMC did not react. The percentages of the reacted SH groups in the equilibrium state were almost equal, regardless of the ratio of thiol compound/MG (1:1, 1:2, 1:5): 38.1 ± 0.9%; 38.2 ± 0.7% and 39.0 ± 0.8% for Cys; 26.5 ± 0.6%; 26.6 ± 2.6% and 27.4 ± 2.5% for GSH; 10.8 ± 0.9%; and 11.2 ± 0.7% and 12.2 ± 0.9% for NAcCys, respectively. Our results explain why substances containing α-amino-β-mercapto-ethane as a pharmacophore are successful scavengers of MG. In equilibrium, HSA SH reacted in high percentages both with an insufficient amount and with an excess of MG (55% and 65%, respectively). An analysis of the hydrophobicity of the microenvironment of the SH group on the HSA surface showed that it could contribute to high levels of SH modification, leading to an increase in the scavenging activity of the albumin thiol.  相似文献   
94.
95.
Synthesis and anticholinesterase activity of 4-aryl-4-oxo-N-phenyl-2-aminylbutyramides, novel class of reversible, moderately potent cholinesterase inhibitors, are reported. Simple substituent variation on aroyl moiety changes anti-AChE activity for two orders of magnitude; also substitution and type of hetero(ali)cycle in position 2 of butanoic moiety govern AChE/BChE selectivity. The most potent compounds showed mixed-type inhibition, indicating their binding to free enzyme and enzyme–substrate complex. Alignment-independent 3D QSAR study on reported compounds, and compounds having similar potencies obtained from the literature, confirmed that alkyl substitution on aroyl moiety of molecules is requisite for inhibition activity. The presence of hydrophobic moiety at close distance from hydrogen bond acceptor has favorable influence on inhibition potency. Docking studies show that compounds probably bind in the middle of the AChE active site gorge, but are buried deeper inside BChE active site gorge, as a consequence of larger BChE gorge void.  相似文献   
96.
97.
A protected pentadecapeptide with the C-terminal sequence of the vasoactive intestinal peptide (VIP) was prepared by coupling the tetrapeptide derivative t-butyloxycarbonyl- -arginyl-N-benzyloxycarbonyl- -lysyl- -glutaminyl- -methionine azide to the partially deprotected hendecapeptide -alanyl- -valyl-N-benzyloxycarbonyl- -lysyl-N-benzyloxycarbonyl- -lysyl- -tyrosyl- -leucyl- - asparaginyl- -seryl- -isoleucyl- -leucyl- -asparaginamide. The preparation of the protected tetradecapeptide t-butyloxycarbonyl-N-benzyloxycarbonyl- -lysyl- -glutaminyl- -methionyl- -alanyl- -valyl-N- benzyloxycarbonyl- -lysyl-N-benzyloxycarbonyl- -lysyl- -tyrosyl- -leucyl- -asparaginyl- -seryl- -isoleucyl- -leucyl- -asparaginamide is also reported. The protecting groups were removed from samples of the tetradeca- and pentadecapeptides. The resulting free peptides showed, although at high dose levels, increase of visceral blood flow and reduction of blood pressure in the dog, and also relaxation of different smooth muscle preparations, which are the characteristic biological activities of VIP.  相似文献   
98.
The aim of the study was to evaluate the efficacy of replacing current dual local therapy (timolol and pilocarpine) with latanoprost 0.005% in 71 pseudoexfoliation glaucoma patients with controlled intraocular pressure (IOP). 39 patients switched to latanoprost 0.005%) and 32 patients continued timolol-pilocarpine therapy. Mean diurnal (IOP) was measured at baseline, after 0.5, 1, 3 and 6 months of treatment. After 6 months 38 patients with latanoprost and 30 patients with timolol-pilocarpine had completed the study. At baseline the mean diurnal IOP was 20.4 +/- 2.0 mmHg for patients in latanoprost treatment group and 21.4 +/- 2.1 mmHg for patients in timolol-pilocarpine group. At the end of the study, after 6 months of treatment, the mean diurnal IOP values were 16.6 +/- 2.4 and 17.9 +/- 2.0 mmHg respectively. IOP was statistically significantly reduced from baseline (p < 0.001). The mean diurnal IOP change from baseline was -3.3 +/- 0.5 mmHg (mean +/- SEM, ANCOVA) for the patients treated with latanoprost and -3.2 +/- 0.4 mmHg for the patients treated with timolol + pilocarpine. This difference in IOP reduction between groups was not statistically significant (z = 0.69; p = 0.49). This study showed that combination therapy (timolol plus pilocarpine) in pseudoexfoliation glaucoma can effectively be replaced by latanoprost monotherapy.  相似文献   
99.
Mesotrypsin is an enigmatic minor human trypsin isoform, which has been recognized for its peculiar resistance to natural trypsin inhibitors such as soybean trypsin inhibitor (SBTI) or human pancreatic secretory trypsin inhibitor (SPINK1). In search of a biological function, two conflicting theories proposed that due to its inhibitor-resistant activity mesotrypsin could prematurely activate or degrade pancreatic zymogens and thus play a pathogenic or protective role in human pancreatitis. In the present study we ruled out both theories by demonstrating that mesotrypsin was grossly defective not only in inhibitor binding, but also in the activation or degradation of pancreatic zymogens. We found that the restricted ability of mesotrypsin to bind inhibitors or to hydrolyze protein substrates was solely due to a single evolutionary mutation, which changed the serine-protease signature glycine 198 residue to arginine. Remarkably, the same mutation endowed mesotrypsin with a novel and unique function: mesotrypsin rapidly hydrolyzed the reactive-site peptide bond of the Kunitz-type trypsin inhibitor SBTI, and irreversibly degraded the Kazal-type temporary inhibitor SPINK1. The observations suggest that the biological function of human mesotrypsin is digestive degradation of trypsin inhibitors. This mechanism can facilitate the digestion of foods rich in natural trypsin inhibitors. Furthermore, the findings raise the possibility that inappropriate activation of mesotrypsinogen in the pancreas might lower protective SPINK1 levels and contribute to the development of human pancreatitis. In this regard, it is noteworthy that the well known pathological trypsinogen activator cathepsin B exhibited a preference for the activation of mesotrypsinogen of all three human trypsinogen isoforms, suggesting a biochemical mechanism for mesotrypsinogen activation in pancreatic acinar cells.  相似文献   
100.
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号