首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   68篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   11篇
  2020年   6篇
  2019年   17篇
  2018年   18篇
  2017年   22篇
  2016年   23篇
  2015年   37篇
  2014年   49篇
  2013年   47篇
  2012年   72篇
  2011年   50篇
  2010年   41篇
  2009年   28篇
  2008年   43篇
  2007年   33篇
  2006年   52篇
  2005年   29篇
  2004年   31篇
  2003年   39篇
  2002年   34篇
  2001年   13篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   9篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1961年   2篇
  1960年   1篇
排序方式: 共有782条查询结果,搜索用时 15 毫秒
141.
142.
143.
Migraine is a common neurovascular brain disorder that is manifested in recurrent episodes of disabling headache. The aim of the present study was to compare the prevalence and heritability of migraine across six of the countries that participate in GenomEUtwin project including a total number of 29,717 twin pairs. Migraine was assessed by questionnaires that differed between most countries. It was most prevalent in Danish and Dutch females (32% and 34%, respectively), whereas the lowest prevalence was found in the younger and older Finnish cohorts (13% and 10%, respectively). The estimated genetic variance (heritability) was significant and the same between sexes in all countries. Heritability ranged from 34% to 57%, with lowest estimates in Australia, and highest estimates in the older cohort of Finland, the Netherlands, and Denmark. There was some indication that part of the genetic variance was non-additive, but this was significant in Sweden only. In addition to genetic factors, environmental effects that are non-shared between members of a twin pair contributed to the liability of migraine. After migraine definitions are homogenized among the participating countries, the GenomEUtwin project will provide a powerful resource to identify the genes involved in migraine.  相似文献   
144.
Novel morphology in Enteromorpha (Ulvophyceae) forming green tides   总被引:1,自引:0,他引:1  
"Green tides" are vast accumulations of unattached green macroalgae associated with eutrophicated marine environments. They have major ecological and economic impacts globally, so an understanding of their origin and persistence is required in order to make management decisions. Blooms predominantly consist of two common fouling genera of the Ulvales, Ulva (distromatic sheets) and Enteromorpha (monostromatic tubes). In the Baltic Sea and elsewhere green tides have increased over the last few decades. On the west coast of Finland, summer blooms consist of monostromatic sheets resembling Monostroma (Codiolales). We identified these as Enteromorpha intestinalis by comparative analyses of rDNA internal transcribed spacer 1 (ITS1), 5.8S, and ITS2 sequences, the first time monostromatic sheets have been found in the genus Enteromorpha. Ordinary attached E. intestinalis sporulated freely in culture, but the sheets reproduced only by cell regeneration into typical tubular thalli. The ITS sequences were identical to those of attached E. intestinalis populations in southwestern Finland, but differed by two substitutions from other Baltic sequences. We infer that this bloom originated from local attached populations and now reproduces clonally by fragmentation. This study provides further evidence of radical changes in gross morphology of green algae under eutrophicated conditions and the need for molecular identification.  相似文献   
145.
Globally 40–70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions. To define the factors that control wood respiration rate of Norway spruce and to produce a model that adequately describes the decomposition process of this species as a function of time, we used an unprecedentedly diverse analytical approach, which included measurements of respiration, fungal community sequencing, N2 fixation rate, nifH copy number, 14C‐dating as well as N%, δ13C and C% values of wood. Our results suggest that climate change will accelerate C flux from deadwood in boreal conditions, due to the observed strong temperature dependency of deadwood respiration. At the research site, the annual C flux from deadwood would increase by 27% from the current 117 g C/kg wood with the projected climate warming (RCP4.5). The second most important control on respiration rate was the stage of wood decomposition; at early stages of decomposition low nitrogen content and low wood moisture limited fungal activity while reduced wood resource quality decreased the respiration rate at the final stages of decomposition. Wood decomposition process was best described by a Sigmoidal model, where after 116 years of wood decomposition mass loss of 95% was reached. Our results on deadwood decomposition are important for C budget calculations in ecosystem and climate change models. We observed for the first time that the temperature dependency of N2 fixation, which has a major role at providing N for wood‐inhabiting fungi, was not constant but varied between wood density classes due to source supply and wood quality. This has significant consequences on projecting N2 fixation rates for deadwood in changing climate.  相似文献   
146.
Aim An area’s ability to support species may be dependent not only on the total amount of available energy it contains but also on energy density (i.e. available energy per unit area). Acknowledging these two aspects of energy availability may increase mechanistic understanding of how increased energy availability results in increased species richness. We studied the relationship between energy density, its variation in space and boreal forest bird species richness and investigated two possible mechanisms: (1) metabolic constraints of organisms, and (2) increased resource availability for specialists. Location Protected areas in Finland’s boreal forest. Methods We tested whether bird species richness was best determined by total energy availability in an area or by energy density and its variation within the area, before and after including bird abundance in the models. We evaluated two main explanatory variables: tree growth reflecting the rate of energy production and tree volume as a measure of biomass. In addition, we modelled individual species’ responses to energy density and its variation, and evaluated the prediction of the metabolic constraints hypothesis that small species are limited by energy density whereas large species are limited by total energy availability in the area. Results Energy density and its variation were good predictors of species richness: together with abundance they explained 84% of variation in species richness (compared with 74% for abundance alone). Pure metabolic constraints were unlikely to explain this relationship. Instead, the mechanism probably involved increased habitat heterogeneity benefiting specialist species. Total energy availability was also an important factor determining species richness but its effect was indirect via abundance. Main conclusions Our results corroborate the importance of energy availability as a driver of species richness in forest bird communities, and they indicate that energy density and its variation in the landscape strongly influence species richness even after accounting for abundance.  相似文献   
147.
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1–R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs'' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.  相似文献   
148.
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).  相似文献   
149.
Habitat selection is a crucial decision for any organism. Selecting a high quality site will positively impact survival and reproductive output. Predation risk is an important component of habitat quality that is known to impact reproductive success and individual condition. However, separating the breeding consequences of decision-making of wild animals from individual quality is difficult. Individuals face reproductive decisions that often vary with quality such that low quality individuals invest less. This reduced reproductive performance could appear a cost of increased risk but may simply reflect lower quality. Thus, teasing apart the effects of individual quality and the effect of predation risk is vital to understand the physiological and reproductive costs of predation risk alone on breeding animals. In this study we alter the actual territory location decisions of pied flycatchers by moving active nests relative to breeding sparrowhawks, the main predators of adult flycatchers. We experimentally measure the non-lethal effects of predation on adults and offspring while controlling for effects of parental quality, individual territory choice and initiation of breeding. We found that chicks from high predation risk nests (<50 m of hawk) were significantly smaller than chicks from low risk nests (>200 m from hawk). However, in contrast to correlative results, females in manipulated high risk nests did not suffer decreased body condition or increased stress response (HSP60 and HSP70). Our results suggest that territory location decisions relative to breeding avian predators cause spatial gradients in individual quality. Small adjustments in territory location decisions have crucial consequences and our results confirm non-lethal costs of predation risk that were expressed in terms of smaller offspring produced. However, females did not show costs in physiological condition which suggests that part of the costs incurred by adults exposed to predation risk are quality determined.  相似文献   
150.
ABSTRACT

We aimed to study whether permanent night workers sleep and psychosocial factors differ from day workers and shift workers. The participants (n = 9 312, 92% females, average age 45 years, most commonly nurses and departmental secretaries) were day workers (DW, n = 2 672), shift workers (SW, n = 6 486) and permanent night workers (PNW, n = 154). The Finnish Public Sector survey responses from six hospital districts from 2012 were combined to payroll data from 91 days preceding the survey. The data were analyzed using Pearson χ2-test, one-way ANOVA and multinomial logistic regression analysis. The PNWs reported slightly longer average sleep length than the SWs or the DWs (7:27 vs. 7:13 and 7:10 h, p < 0.001). The PNWs reported least often difficulties in maintaining sleep (p < 0.001) compared to the SWs and the DWs. The PNWs reported most often difficulties to fall asleep and fatigue during free-time (p-values <0.001). The DWs and PNWs experienced less often work-life conflict than the SWs (25 and 26 vs. 38%, p < 0.001). The PNWs were more often satisfied with autonomy at work and appreciation and fair treatment by colleagues than the DWs or the SWs (p < 0.001). The SWs and PNWs reported remarkably higher occurrence of verbal (p < 0.001, OR 3.71, 95% CI 3.23–4.27 and OR 7.67, 95% CI 5.35–10.99, respectively) and physical workplace violence (p < 0.001, OR 9.24, 95% CI 7.17–11.90 and OR 28.34, 95% CI 16.64–43.06, respectively) compared to DWs. Conclusively, PNWs reported contradictory differences in sleep quality compared to DWs and SWs. PNWs are more often satisfied with their colleagues and autonomy at work than DWs or SWs but face workplace violence remarkably more often.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号