首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   92篇
  国内免费   1篇
  2023年   5篇
  2022年   11篇
  2021年   11篇
  2020年   8篇
  2019年   20篇
  2018年   20篇
  2017年   23篇
  2016年   25篇
  2015年   41篇
  2014年   54篇
  2013年   52篇
  2012年   78篇
  2011年   55篇
  2010年   44篇
  2009年   38篇
  2008年   51篇
  2007年   36篇
  2006年   61篇
  2005年   35篇
  2004年   40篇
  2003年   48篇
  2002年   37篇
  2001年   21篇
  2000年   16篇
  1999年   13篇
  1998年   4篇
  1997年   11篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1971年   2篇
  1961年   2篇
  1960年   1篇
排序方式: 共有942条查询结果,搜索用时 15 毫秒
81.
Ma WJ  Guo X  Liu JT  Liu RY  Hu JW  Sun AG  Yu YX  Lammi MJ 《Proteomics》2011,11(14):2881-2890
Kashin-Beck disease (KBD) is a chronic endemic osteochondropathy with unclear pathogenesis. It is a degenerative disease similar to osteoarthritis, but with different manifestations of cartilage damage. The aim of this investigation was to show the protein changes in KBD cartilage and to identify the candidate proteins in order to understand the pathogenesis of the disease. Proteins were extracted from the media of primary cell cultures of KBD and normal chondrocytes, and separated by two-dimensional fluorescence difference gel electrophoresis (2-D DIGE). MALDI-TOF/TOF analysis revealed statistically significant differences in 27 proteins from KBD chondrocyte cultures, which consisted of 17 up-regulated and ten down-regulated proteins. The results were further validated by Western blot analysis. The proteins identified are mainly involved in cellular redox homeostasis and stress response (MnSOD, Hsp27, Peroxiredoxin-1, and Cofilin-1), glycolysis (PGK-1, PGM-1, α-enolase), and cell motility and cytoskeletal organization (Actin, Calponin-2, and Keratin). These KBD-associated proteins indicate that cytoskeletal remodeling, glycometabolism, and oxidative stress are abnormal in KBD articular cartilage.  相似文献   
82.
The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25°C and 37°C for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.  相似文献   
83.

Background

Extracellular superoxide dismutase (SOD3), which dismutates superoxide anion to hydrogen peroxide, has been shown to reduce the free radical stress derived apoptosis in tissue injuries. Since both superoxide anion and hydrogen peroxide have a marked impact on signal transduction pathways and could potentially explain a number of apoptosis and survival -related phenomena in different pathological conditions, we clarified the impact of SOD3 on Akt and Erk1/2 cell survival pathways in rat hind limb injury model.

Methodology and Principal Findings

Based on our data, the hind limb ischemic rats treated with virally delivered sod3 have milder injury and less apoptosis than control animals that could be due to parallel activation of pro-proliferative and anti-apoptotic Erk1/2 and Akt pathways. The common downstream factor of both signaling pathways, the apoptosis related forkhead box protein O3a (FoxO3a), was phosphorylated and translocated to the cytoplasm in sod3 treated tissues and cell line. Additionally, we obtained increased mRNA production of elk-1, ets-1, and microRNA 21 (miR-21), whereas synthesis of bim mRNA was decreased in sod3 overexpressing tissues. We further showed that overexpression of sod3 modulated redox related gene expression by downregulating nox2 and inos when compared to injured control animals.

Conclusions and Significance

The study shows the complexity of SOD3-derived effects on tissue injury recovery that are not limited to the reduction of superoxide anion caused cellular stress but highlights the impact of SOD3 related signal transduction on tissue functions and suggests an important role for SOD3 in attenuating cell stress effects in different pathological conditions.  相似文献   
84.
Current knowledge of the succession of fungi in decaying wood is mostly based on fruit bodies and in vitro culture. Here, we investigated the changing community of metabolically active fungi during the decomposition of fallen Picea abies logs by directly extracting and barcode sequencing precursor rRNA. We also compared rRNA-derived amplicons of the 18S and ITS regions in 21 isolates and discuss the use of RNA as a marker of metabolically active fungi. The richness of active fungi, revealed as separated bands in DGGE, peaked in logs at an advanced stage of decay. Soft-rot fungi were common in the early stages but white- and brown-rot fungi became dominant as decay progressed. Ectomycorrhizal fungi were detected at an early stage, and they became the most abundant group in the late stages of succession. A comparison of rRNA-derived amplicons revealed that although ITS was detected in the form of precursor rRNA, introns within 18S rDNA were already spliced. As such, rRNA- and rDNA-derived amplicons would yield different profiles of active and total communities if profiling method is affected by amplicon length.  相似文献   
85.
In experimental animals, bradykinin type-1 receptors (BK-1Rs) are induced during inflammation and ischemia, and, by exerting either cardioprotective or cardiotoxic effects, they may contribute to the pathogenesis of heart failure. Nothing is known about the expression of BK-1Rs in human heart failure. Human heart tissue was obtained from excised hearts of patients undergoing cardiac transplantation (n = 13), due to idiopathic dilated cardiomyopathy (IDC; n = 7) or to coronary heart disease (CHD; n = 6), and from normal hearts (n = 6). The expression of BK-1Rs was analyzed by means of competitive RT-PCR, Western blot analysis, and immunohistochemistry. Expression of BK-1R mRNA was increased in both IDC (2.8-fold) and CHD (2.1-fold) hearts compared with normal hearts. The observed changes were verified at the protein level. Expression of BK-1Rs in failing hearts localized to the endothelium of intramyocardial coronary vessels and correlated with an increased expression of TNF-alpha in the vessel wall. Treatment of human coronary artery endothelial cells with TNF-alpha increases their BK-1R expression. These novel results show that BK-1Rs are induced in the endothelium of intramyocardial coronary vessels in failing human hearts and so may participate in the pathogenesis of heart failure.  相似文献   
86.
87.
Grey horses are born coloured, turn progressively grey and often develop melanomas late in life. Grey shows an autosomal dominant inheritance and the locus has previously been mapped to horse chromosome 25 (ECA25), around the TXN gene. We have now developed eight new single nucleotide polymorphisms (SNPs) associated with genes on ECA25 using information on the linear order of genes on human chromosome 9q, as well as the human and mouse coding sequences. These SNPs were mapped in relation to the Grey locus using more than 300 progeny from matings between two Swedish Warmblood grey stallions and non-grey mares. Grey was firmly assigned to an interval with flanking markers NANS and ABCA1. This corresponds to a region of approximately 6.9 Mb on human chromosome 9q. Furthermore, no recombination was observed between Grey, TGFBR1 and TMEFF1, the last two being 1.4 Mb apart in human. There are no obvious candidate genes in this region and none of the genes has been associated with pigmentation disorders or melanoma development, suggesting that the grey phenotype is caused by a mutation in a novel gene.  相似文献   
88.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   
89.
The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号