首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   153篇
  2063篇
  2022年   13篇
  2021年   10篇
  2019年   8篇
  2018年   16篇
  2017年   23篇
  2016年   15篇
  2015年   51篇
  2014年   49篇
  2013年   115篇
  2012年   77篇
  2011年   88篇
  2010年   51篇
  2009年   43篇
  2008年   94篇
  2007年   83篇
  2006年   83篇
  2005年   93篇
  2004年   99篇
  2003年   113篇
  2002年   122篇
  2001年   53篇
  2000年   51篇
  1999年   49篇
  1998年   40篇
  1997年   50篇
  1996年   41篇
  1995年   40篇
  1994年   34篇
  1993年   32篇
  1992年   38篇
  1991年   25篇
  1990年   24篇
  1989年   25篇
  1988年   39篇
  1987年   26篇
  1986年   14篇
  1985年   18篇
  1984年   22篇
  1983年   16篇
  1982年   19篇
  1981年   13篇
  1980年   10篇
  1979年   14篇
  1978年   21篇
  1977年   17篇
  1976年   9篇
  1975年   12篇
  1972年   8篇
  1967年   10篇
  1966年   8篇
排序方式: 共有2063条查询结果,搜索用时 15 毫秒
81.
GAMYB is a component of gibberellin (GA) signaling in cereal aleurone cells, and has an important role in flower development. However, it is unclear how GAMYB function is regulated. We examined the involvement of a microRNA, miR159, in the regulation of GAMYB expression in cereal aleurone cells and flower development. In aleurone cells, no miR159 expression was observed with or without GA treatment, suggesting that miR159 is not involved in the regulation of GAMYB and GAMYB-like genes in this tissue. miR159 was expressed in tissues other than aleurone, and miR159 over-expressors showed similar but more severe phenotypes than the gamyb mutant. GAMYB and GAMYB-like genes are co-expressed with miR159 in anthers, and the mRNA levels for GAMYB and GAMYB-like genes are negatively correlated with miR159 levels during anther development. Thus, OsGAMYB and OsGAMYB-like genes are regulated by miR159 in flowers. A microarray analysis revealed that OsGAMYB and its upstream regulator SLR1 are involved in the regulation of almost all GA-mediated gene expression in rice aleurone cells. Moreover, different sets of genes are regulated by GAMYB in aleurone cells and anthers. GAMYB binds directly to promoter regions of its target genes in anthers as well as aleurone cells. Based on these observations, we suggest that the regulation of GAMYB expression and GAMYB function are different in aleurone cells and flowers in rice.  相似文献   
82.
Female chickens known to be heterozygous for resistance to subgroups A and B of the avian leukosis-sarcoma viruses were mated to males known to be homozygously resistant to both. The progeny were assayed both on the chorioallantoic membrane (CAM) and in tissue culture for resistance to representative viruses of the A, B, and tentatively defined C subgroups. Segregation ratios of resistance to A and B subgroup viruses agreed with the previously suggested hypothesis of single-autosomal-recessive genes controlling resistance to each subgroup. Mixed infection on the CAM and replicate plate infection in tissue culture with subgroup A and B viruses showed that resistance to the A and B subgroups was inherited independently. Assays with viruses tentatively classified as subgroup C indicated that they were largely composed of a mixture of subgroup A and B viruses or of particles possessing the host range specificity of both. However, virus stocks of the subgroup C category, as well as some stocks classified as subgroup B, produced small numbers of pocks or foci on individuals known to be resistant to subgroup A and B viruses. It is suggested that these Rous sarcoma virus stocks carry between 1 and 10% of a true subgroup C virus.  相似文献   
83.
Light-induced changes of cytosolic pH (pHc) and the plasmalemmapotential (Em) in dark-adapted leaf cells of the aquatic plant,Egeria densa were measured simultaneously with double-barreledpH-sensitive microelectrodes. Upon illumination, pHc increasedtransiently and then decreased to a level that was lower thanthe original value, while the plasmalemma was greatly hyperpolarizedafter an initial small depolarization. DCMU inhibited the light-inducedchanges in both pHc and Em. DCMU acted without directly inhibitingthe electrogenic proton pump in the plasmalemma since a decreasein pHc caused by treatment with butyrate (H+-loading) hyperpolarizedthe plasmalemma in DCMU-pretreated cells. N.N-Dicyclohexylcarbodiimide(DCCD) also inhibited the light-induced changes in both pHcand Em. This result may be explained by direct inhibition ofthe proton pump in the plasmalemma by DCCD since the decreasein pHc caused by butyrate did not induce membrane hyperpolarizationin DCCD-treated leaf cells. Fusicoccin induced membrane hyperpolarizationand slight acidification of the cytosol. DCCD inhibited thefusicoccin-induced changes in both pHc and Em. The mechanismof the light-induced changes in pHc is discussed in relationto activities of the proton pump in the plasmalemma and photosynthesis. (Received January 10, 1994; Accepted June 9, 1994)  相似文献   
84.
85.
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles.In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.  相似文献   
86.
87.
 Forty three S tester lines of Brassica oleracea were characterized using DNA and protein gel-blotting analyses. DNA gel-blot analysis of HindIII-digested genomic DNA with class-I and class-II SLG probes revealed that 40 lines could be classified as class-I S haplotypes while three lines could be classified as class-II S haplotypes. The band patterns in the S tester lines were highly polymorphic. Although the S tester lines typically showed two bands corresponding to SLG and SRK in the analysis with the class-I SLG probe, only one band was observed in the S 24 homozygote. This band was identified as SRK, suggesting that this haplotype has no class-I SLG band. In the analysis using the class-II SLG probe, one plant yielded a different band pattern from the known class-II haplotypes, S 2 , S 5 and S 15 . Unexpectedly, this plant was reciprocally cross-incompatible with the S 2 haplotype. Therefore, it was designated as S 2-b . We found an S 13 haplotype having a restriction fragment length polymorphism different from that of the S 13 homozygotes of the S tester line. These findings indicate that S homozygous lines with the same S specificity do not necessarily show the same band pattern in the DNA gel-blot analysis. Soluble stigma proteins of 32 S homozygotes were separated by isoelectric focusing and detected using anti-S 22 SLG antiserum. S haplotype-specific bands were detected in 27 S homozygotes but not in five S homozygotes, including the S 24 homozygote. This is consistent with the observation that the S 24 haplotype had no SLG band. Received: 13 July 1998 / Accepted: 29 September 1998  相似文献   
88.
Peroxisome proliferator-activated receptors (PPARs) are important drug targets for treatment of dyslipidemia, type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and great efforts have been made to develop novel PPAR ligands. However, most existing PPAR ligands contain a carboxylic acid (CA) or thiazolidinedione (TZD) structure (acidic head group) that is essential for activity. We recently discovered non-CA/TZD class PPARα/δ partial agonists, which contain an acetamide moiety and adjacent methyl group, linked to a 1,2,4-oxadiazole ring (“fragment a”). We hypothesized that the acetamide structure might interact with the CA/TZD-binding pocket. To test this idea, we firstly replaced fragment a in one of our compounds with the α-alkoxy-CA structure often found in PPAR agonists. Secondly, we replaced the α-alkoxy-CA head group of several reported PPAR agonists with our acetamide-based fragment a. The agonistic activities of the synthesized hybrid compounds toward PPARs (PPARα, PPARγ and PPARδ) were evaluated by means of cell-based reporter gene assays. All the hybrid molecules showed PPAR-agonistic activities, but replacement of the α-alkoxy-CA head group altered the maximum efficacy and the subtype-specificity. The acetamide-based hybrid molecules showed partial agonism toward PPARα and PPARδ, whereas the α-alkoxy-CA-based molecules were generally selective for PPARα and PPARγ, with relatively high activation efficacies. Thus, the fragment replacement strategy appears promising for the development of novel acetamide-based PPARα/δ dual agonists.  相似文献   
89.
We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  相似文献   
90.
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic β-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic β-cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号