首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   40篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   22篇
  2014年   16篇
  2013年   27篇
  2012年   40篇
  2011年   39篇
  2010年   22篇
  2009年   25篇
  2008年   33篇
  2007年   31篇
  2006年   31篇
  2005年   43篇
  2004年   18篇
  2003年   19篇
  2002年   25篇
  2001年   9篇
  2000年   8篇
  1998年   15篇
  1997年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1978年   5篇
  1975年   5篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1969年   5篇
  1968年   4篇
  1967年   4篇
  1966年   2篇
  1965年   2篇
排序方式: 共有596条查询结果,搜索用时 156 毫秒
41.

Background

The filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina) produces increased cellulase expression when grown on cellulose or its derivatives as a sole carbon source. It has been believed that β-glucosidases of T. reesei not only metabolize cellobiose but also contribute in the production of inducers of cellulase gene expression by their transglycosylation activity. The cellulase hyper-producing mutant PC-3-7 developed in Japan has enhanced cellulase production ability when cellobiose is used as the inducer. The comparative genomics analysis of PC-3-7 and its parent revealed a single-nucleotide mutation within the bgl2 gene encoding intracellular β-glucosidase II (BGLII/Cel1a), giving rise to an amino acid substitution in PC-3-7, which could potentially account for the enhanced cellulase expression when these strains are cultivated on cellulose and cellobiose.

Results

To analyze the effects of the BGLII mutation in cellulase induction, we constructed both a bgl2 revertant and a disruptant. Enzymatic analysis of the transformant lysates showed that the strain expressing mutant BGLII exhibited weakened cellobiose hydrolytic activity, but produced some transglycosylation products, suggesting that the SNP in bgl2 strongly diminished cellobiase activity, but did not result in complete loss of function of BGLII. The analysis of the recombinant BGLII revealed that transglycosylation products might be oligosaccharides, composed probably of glucose linked β-1,4, β-1,3, or a mixture of both. PC-3-7 revertants of bgl2 exhibited reduced expression and inducibility of cellulase during growth on cellulose and cellobiose substrates. Furthermore, the effect of this bgl2 mutation was reproduced in the common strain QM9414 in which the transformants showed cellulase production comparable to that of PC-3-7.

Conclusion

We conclude that BGLII plays an important role in cellulase induction in T. reesei and that the bgl2 mutation in PC-3-7 brought about enhanced cellulase expression on cellobiose. The results of the investigation using PC-3-7 suggested that other mutation(s) in PC-3-7 could also contribute to cellulase induction. Further investigation is essential to unravel the mechanism responsible for cellulase induction in T. reesei.
  相似文献   
42.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   
43.
SUMMARY Vertebrate hearts have evolved from undivided tubular hearts of chordate ancestors. One of the most intriguing issues in heart evolution is the abrupt appearance of multichambered hearts in the agnathan vertebrates. To explore the developmental mechanisms behind the drastic morphological changes that led to complex vertebrate hearts, we examined the developmental patterning of the agnathan lamprey Lethenteron japonicum . We isolated lamprey orthologs of genes thought to be essential for heart development in chicken and mouse embryos, including genes responsible for differentiation and proliferation of the myocardium ( LjTbx20, LjTbx4/5 , and LjIsl1/2A ), establishment of left–right heart asymmetry ( LjPitxA ), and partitioning of the heart tube ( LjTbx2/3A ), and studied their expression patterns during lamprey cardiogenesis. We confirmed the presence of the cardiac progenitors expressing LjIsl1/2A in the pharyngeal and splanchnic mesoderm and the heart tube of the lamprey. The presence of LjIsl1/2A -positive cardiac progenitor cells in cardiogenesis may have permitted an increase of myocardial size in vertebrates. We also observed LjPitxA expression in the left side of lamprey cardiac mesoderm, suggesting that asymmetric expression of Pitx in the heart has been acquired in the vertebrate lineage. Additionally, we observed LjTbx2/3A expression in the nonchambered myocardium, supporting the view that acquisition of Tbx2/3 expression may have allowed primitive tubular hearts to partition, giving rise to multichambered hearts.  相似文献   
44.
SUMMARY Little is known about the stem cells of organisms early in metazoan evolution. To characterize the stem cell system in demosponges, we identified Piwi homologs of a freshwater sponge, Ephydatia fluviatilis, as candidate stem cell (archeocyte) markers. EfPiwiA mRNA was expressed in cells with archeocyte cell morphological features. We demonstrated that these EfPiwiA‐expressing cells were indeed stem cells by showing their ability to proliferate, as indicated by BrdU‐incorporation, and to differentiate, as indicated by the coexpression of EfPiwiA with cell‐lineage‐specific genes in presumptive committed archeocytes. EfPiwiA mRNA expression was maintained in mature choanocytes forming chambers, in contrast to the transition of gene expression from EfPiwiA to cell‐lineage‐specific markers during archeocyte differentiation into other cell types. Choanocytes are food‐entrapping cells with morphological features similar to those of choanoflagellates (microvillus collar and a flagellum). Their known abilities to transform into archeocytes under specific circumstances and to give rise to gametes (mostly sperm) indicate that even when they are fully differentiated, choanocytes maintain pluripotent stem cell‐like potential. Based on the specific expression of EfPiwiA in archeocytes and choanocytes, combined with previous studies, we propose that both archeocytes and choanocytes are components of the demosponge stem cell system. We discuss the possibility that choanocytes might represent the ancestral stem cells, whereas archeocytes might represent stem cells that further evolved in ancestral multicellular organisms.  相似文献   
45.
An enormously developed giant cheliped with the other small one characterizes the adult male fiddler crab. Some experiments with artificial severances of cheliped indicate that such a handedness in the cheliped size is maintained even after the regeneration of severed cheliped. Other experimental researches give some results about an unknown physiological system which controls the emergence and the regeneration of the handedness in the cheliped size. In this paper, with two hypothesized factors relevant to the regeneration of a severed cheliped, we propose a simple mathematical model to describe the experimental result about the cheliped regeneration with a handedness after the cheliped severance for the fiddler crab. Our model gives a suggestion about an underlying system for the cheliped regeneration in the fiddler crab or some other crustacean species.  相似文献   
46.
47.
Polistes formosanus Sonan, 1927 is closely related to P. japonicus de Saussure, 1858, and has been treated variously as a good species or subspecies or synonym of P. japonicus. We designate the lectotype of P. formosanus. Detailed examination of morphological characters of specimens from continental Asia, Taiwan, the Nansei Islands and main islands of Japan showed that P. formosanus is a good species different from P. japonicus. Molecular phylogenetic analyses using mitochondrial genes also supported this conclusion. Polistes formosanus is distributed in northern and central Taiwan and in the Nansei Islands and extends northward to the Amami Islands, while P. japonicus occurs in continental Asia, central Taiwan, Korean Peninsula, Honshu to Kyushu of Japan and the Osumi Islands (Yakushima and Tanega-shima Island) of the Nansei Islands. The speciation and biogeography of P. formosanus are briefly discussed.  相似文献   
48.
In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA(4), a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.  相似文献   
49.
50.
We developed a novel protein chip made of a diamond-like, carbon-coated stainless steel plate (DLC plate), the surface of which is chemically modified with N-hydroxysuccinimide ester. To produce a high-density protein chip using the DLC plate, proteins separated by SDS gel electrophoresis or two-dimensional electrophoresis were electroblotted onto the DLC plate and immobilized covalently. A high blotting efficiency (25-70%) for transferring proteins from the gels onto the DLC plates was achieved by improvement of the electrophoresis device and electroblotting techniques. With the use of the DLC plate, we developed novel techniques to identify proteins immobilized on the chip and to detect protein-protein interactions on the chip by mass spectrometric analysis. We also developed a technique to identify post-translationally modified proteins, such as glycoproteins, on the protein chip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号