首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   40篇
  597篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   22篇
  2014年   16篇
  2013年   27篇
  2012年   40篇
  2011年   39篇
  2010年   22篇
  2009年   25篇
  2008年   33篇
  2007年   31篇
  2006年   31篇
  2005年   43篇
  2004年   18篇
  2003年   19篇
  2002年   25篇
  2001年   9篇
  2000年   8篇
  1998年   15篇
  1997年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1978年   5篇
  1975年   5篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1969年   5篇
  1968年   4篇
  1967年   4篇
  1966年   2篇
  1965年   2篇
排序方式: 共有597条查询结果,搜索用时 10 毫秒
11.
In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, trophoblasts invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. Here, we showed that autophagy, an intracellular bulk degradation system, occurred in extravillous trophoblast (EVT) cells under hypoxia in vitro and in vivo. An enhancement of autophagy was observed in EVTs in early placental tissues, which suffer from physiological hypoxia. The invasion and vascular remodeling under hypoxia were significantly reduced in autophagy-deficient EVT cells compared with wild-type EVT cells. Interestingly, soluble endoglin (sENG), which increased in sera in preeclamptic cases, suppressed EVT invasion by inhibiting autophagy. The sENG-inhibited EVT invasion was recovered by TGFB1 treatment in a dose-dependent manner. A high dose of sENG inhibited the vascular construction by EVT cells and human umbilical vein endothelial cells (HUVECs), meanwhile a low dose of sENG inhibited the replacement of HUVECs by EVT cells. A protein selectively degraded by autophagy, SQSTM1, accumulated in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy. This is the first report showing that impaired autophagy in EVT contributes to the pathophysiology of preeclampsia.  相似文献   
12.
Sleep and Biological Rhythms - This study was conducted to investigate the association between industrial accidents and sleep-related parameters in factory workers, and to examine the effectiveness...  相似文献   
13.
In this study, we proposed a culture method for forming embryoid bodies (EBs) from mouse embryonic stem (ES) cells using a round-bottom 96-well polystyrene plate coated with 2-methacryloyloxyethyl phosphorylcholine (MPC plate). MPC is a phospholipid biocompatible polymer and prevents cells from adhering to the culture surface. The ES cells were seeded at 1000 cells per well in the MPC plate with 200 μl of medium. After 5 days of static incubation, a spherical cell aggregate termed EB was formed in a well. The size (diameter) of resulting EB was approximately 550 μm and it contained approx. 22,000 cells. It seems that the non-adhesiveness and the roundness of the well are important factors to form a good EB. Transferring the EBs to the attached differentiation culture, the EBs spread out and flattened, and the beating cells (cardiomyocytes) were effectively generated in the outgrowth of EBs. The round-bottom 96-well polystyrene plate coated with MPC is an effective tool for EB formation.  相似文献   
14.
15.
We describe here the discovery and biological profile of a series of isoindolinone derivatives as developed mGluR1 antagonists. Our combined strategy of rapid parallel synthesis and conventional medicinal optimization successfully led to N-cyclopropyl 22 and N-isopropyl isoindolinone analogs 21 and 23 with improved in vivo DMPK profiles. Moreover the most advanced analog 23 showed an oral antipsychotic-like effect at a dose of 1 mg/kg in an animal model.  相似文献   
16.
Phyllotaxy is defined as the spatial arrangement of leaves on the stem. The mechanism responsible for this extremely regular pattern is one of the most fascinating enigmas in plant biology. In this study, we identified a gene regulating the phyllotactic pattern in rice. Loss‐of‐function mutants of the DECUSSATE (DEC) gene displayed a phyllotactic conversion from normal distichous pattern to decussate. The dec mutants had an enlarged shoot apical meristem with enhanced cell division activity. In contrast to the shoot apical meristem, the size of the root apical meristem in the dec mutants was reduced, and cell division activity was suppressed. These phenotypes indicate that DEC has opposite functions in the shoot apical meristem and root apical meristem. Map‐based cloning revealed that DEC encodes a plant‐specific protein containing a glutamine‐rich region and a conserved motif. Although its molecular function is unclear, the conserved domain is shared with fungi and animals. Expression analysis showed that several type A response regulator genes that act in the cytokinin signaling pathway were down‐regulated in the dec mutant. In addition, dec seedlings showed a reduced responsiveness to exogenous cytokinin. Our results suggest that DEC controls the phyllotactic pattern by affecting cytokinin signaling in rice.  相似文献   
17.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   
18.
19.
Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive.  相似文献   
20.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号