首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   29篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   6篇
  2015年   19篇
  2014年   18篇
  2013年   27篇
  2012年   34篇
  2011年   32篇
  2010年   20篇
  2009年   22篇
  2008年   26篇
  2007年   22篇
  2006年   25篇
  2005年   37篇
  2004年   16篇
  2003年   13篇
  2002年   23篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   13篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
351.
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.  相似文献   
352.
Notch signaling plays crucial roles in the control of cell fate and physiology through local cell–cell interactions. The core processes of Notch signal transduction are well established, but the mechanisms that fine-tune the pathway in various developmental and post-developmental contexts are less clear. Drosophila almondex, which encodes an evolutionarily conserved double-pass transmembrane protein, was identified in the 1970s as a maternal-effect gene that regulates Notch signaling in certain contexts, but its mechanistic function remains obscure. In this study, we examined the role of almondex in Notch signaling during early Drosophila embryogenesis. We found that in addition to being required for lateral inhibition in the neuroectoderm, almondex is also partially required for Notch signaling-dependent single-minded expression in the mesectoderm. Furthermore, we found that almondex is required for proper subcellular Notch receptor distribution in the neuroectoderm, specifically during mid-stage 5 development. The absence of maternal almondex during this critical window of time caused Notch to accumulate abnormally in cells in a mesh-like pattern. This phenotype did not include any obvious change in subcellular Delta ligand distribution, suggesting that it does not result from a general vesicular-trafficking defect. Considering that dynamic Notch trafficking regulates signal output to fit the specific context, we speculate that almondex may facilitate Notch activation by regulating intracellular Notch receptor distribution during early embryogenesis.  相似文献   
353.
354.
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.  相似文献   
355.
Lipopolysaccharide (LPS) is a bacterial molecule that induces nitric oxide (NO) production and triggers defense systems in plant-pathogen interactions. NO production is induced in the roots of Lotus japonicus after inoculation of the roots with its microsymbiont Mesorhizobium loti. However, the rhizobial molecule that induces NO production has not yet been identified. We investigated NO production in the roots of L. japonicus by treatment with LPS of M. loti. LPS was prepared by phenol-hot water extraction and separated into several fractions: polysaccharide, lipooligosaccharide, oligosaccharide and lipid A. In the roots of L. japonicus, NO production was observed with an NO-specific fluorescent dye 4, 10 and 24 h after treatment with each fraction of LPS. NO production was detected 4 h after treatment with all fractions. NO production was also detectable 24 h after treatment, except after treatment with the polysaccharide and oligosaccharide fractions. Expression of a class 1 hemoglobin gene and application of an NO scavenger showed that the treatment with LPS and LOS induced a similar response to inoculation with M. loti. These data suggest that LPS of M. loti induces NO production after inoculation with M. loti.  相似文献   
356.
Plant cytokinesis occurs by the growth of cell plates from the interior to the periphery of the cell. These dynamic events in cytokinesis are mediated by a plant-specific microtubule (MT) array called the phragmoplast, which consists of bundled antiparallel MTs between the two daughter nuclei. The NACK-PQR pathway, a NACK1 kinesin-like protein and mitogen activated protein kinase (MAPK) cascade, is a key regulator of plant cytokinesis through the regulation of phragmoplast MTs. The MT-associated protein MAP65 has been identified as one of the structural components of MT assays involved in cell division, and we recently showed that Arabidopsis AtMAP65-3/PLEIADE (PLE) is a substrate of MPK4 that is a component of the NACK-PQR pathway in Arabidopsis. Here we show that AtMAP65-1 and AtMAP65-2 are also phosphorylated by MPK4. AtMAP65-1 and AtMAP65-2 that localize to the phragmoplast were phosphorylated by MPK4 in vitro. Although mutants of the Arabidopsis AtMAP65-1 and AtMAP65-2 genes exhibited a wild-type phenotype, double mutations of AtMAP65-3 and AtMAP65-1 or AtMAP65-2 caused more severe growth and cytokinetic defects than the single atmap65-3/ple mutation. These results suggest that AtMAP65-1 and AtMAP65-2 also function in cytokinesis downstream of MPK4.Key words: MAP65, microtubule-associated protein, MAPK, cytokinesis, phragmoplast, microtubule, arabidopsisMitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules in eukaryotes, and are involved in various signaling processes in plant development, cell division and responses to endogenous or exogenous stimuli.1 The NACK-PQR pathway, one of the best-characterized MAPK cascades in plants, has been identified as a key regulator of plant cytokinesis in tobacco. This pathway is composed of NPK1 MAPK kinase kinase (MAPKKK), NQK1/NtMEK1 MAPK kinase (MAPKK), NRK1/NTF6 MAPK and NACK1 kinesin-like protein, an activator of NPK1 MAPKKK.25 During cytokinesis, all these components are localized on the equator of the phragmoplast, which is the plant-specific cytokinetic apparatus organized by microtubules (MTs). Downstream of this pathway, tobacco MAP65-1, an MT-associated protein, is phosphorylated by NRK1/NTF6 MAPK and phosphorylated MAP65-1 is localized to the equator of the phragmoplast.6 Phosphorylation of MAP65-1 by NRK1/NTF6 decreases the ability of MAP65-1 to bundle MTs, suggesting that the NACK-PQR pathway regulates expansion of the phragmoplast through the phosphorylation of MAP65.6The NACK-PQR pathway also seems to be conserved in Arabidopsis and rice. Several orthologs of components of the NACK-PQR pathway except for MAPK have been identified independently as regulators of cytokinesis in these plants.3,5,714 Recently we reported that ANP MAPKKKs, MPK6/ANQ MAPKK and MPK4 MAPK biochemically constitute the MAPK pathway and HINKEL/AtNACK1 functions as an activator of ANP MAPKKKs.15 In addition, we revealed that MPK4 MAPK is localized to cell plates during cytokinesis, is required for cytokinesis in Arabidopsis and phosphorylates AtMAP65-3.16 Although AtMAP65-3 is proposed to be involved in cytokinesis,17,18 and AtMAP65-1 is supposed to be a substrate of MPK4 based on a series of experiments,6,19,20 the involvement in cytokinesis of other closely related members of the Arabidopsis MAP65 family, AtMAP65-1 and AtNAP65-2, has yet to be tested. In this report, we suggest redundant functions of these MAP65 molecules in cytokinesis of Arabidopsis.  相似文献   
357.
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior–posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.  相似文献   
358.
The newt is an indispensable model animal, of particular utility for regeneration studies. Recently, a high-throughput transgenic protocol was established for the Japanese common newt, Cynops pyrrhogaster. For studies of regeneration, metamorphosed animals may be favorable; however, for this species, there is no efficient protocol for maintaining juveniles after metamorphosis in the laboratory. In these animals, survival drops drastically after metamorphosis as their foraging behaviour changes to adapt to a terrestrial habitat, making feeding in the laboratory with live or moving foods more difficult. To elevate the efficiency of laboratory rearing of this species, we examined metamorphosis inhibition (Ml) protocols to bypass the period (four months to two years after hatching) in which the animal feeds exclusively on moving foods. We found that approximately 30% of animals survived after 2-year Ml, and that the survivors continuously grew, only with static food while maintaining their larval form and foraging behaviour in 0.02% thiourea (TU) aqueous solution, then metamorphosed when returned to a standard rearing solution even after 2-year-MI. The morphology and foraging behavior (feeding on static foods in water) of these metamorphosed newts resembled that of normally developed adult newts. Furthermore, they were able to fully regenerate amputated limbs, suggesting regenerative capacity is preserved in these animals. Thus, controlling metamorphosis with TU allows newts to be reared with the same static food under aqueous conditions, providing an alternative rearing protocol that offers the advantage of bypassing the critical period and obtaining animals that have grown sufficiently for use in regeneration studies.  相似文献   
359.
Potassium (K) is an important plant macronutrient that has various functions throughout the whole plant over its entire life span. Cytokinins (CKs) are known to regulate macronutrient homeostasis by controlling the expression of nitrate, phosphate and sulfate transporters. Although several studies have described how CKs signal deficiencies for some macronutrients, the roles of CKs in K signaling are poorly understood. CK content has been shown to decrease under K-starved conditions. Specifically, a CK-deficient mutant was more tolerant to low K than wild-type; however, a plant with an overaccumulation of CKs was more sensitive to low K. These results suggest that K deprivation alters CK metabolism, leading to a decrease in CK content. To investigate this phenomenon further, several Arabidopsis lines, including a CK-deficient mutant and CK receptor mutants, were analyzed in low K conditions using molecular, genetic and biochemical approaches. ROS accumulation and root hair growth in low K were also influenced by CKs. CK receptor mutants lost the responsiveness to K-deficient signaling, including ROS accumulation and root hair growth, but the CK-deficient mutant accumulated more ROS and exhibited up-regulated expression of HAK5, which is a high-affinity K uptake transporter gene that is rapidly induced by low K stress in ROS- and ethylene-dependent manner in response to low K. From these results, we conclude that a reduction in CK levels subsequently allows fast and effective stimulation of low K-induced ROS accumulation, root hair growth and HAK5 expression, leading to plant adaptation to low K conditions.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号