首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   32篇
  2022年   4篇
  2021年   9篇
  2020年   8篇
  2019年   10篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   20篇
  2014年   16篇
  2013年   30篇
  2012年   36篇
  2011年   38篇
  2010年   26篇
  2009年   25篇
  2008年   33篇
  2007年   26篇
  2006年   27篇
  2005年   42篇
  2004年   23篇
  2003年   16篇
  2002年   23篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   14篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有506条查询结果,搜索用时 265 毫秒
51.
The single-nucleotide polymorphisms (SNPs) in the human DNase I gene (DNASE1) might be involved in susceptibility to some common diseases; however, only limited population data are available. Further, the effects of these SNPs on in vivo DNase I activity remain unknown. The genotype and haplotype of all the SNPs in DNASE1 were determined in 3 ethnic groups including 14 populations using newly developed methods. Together with our previous data on the nonsynonymous SNPs, two major haplotypes based on the five exonic SNPs were identified; genetic diversity in the Asian population was low. Among 10 SNPs, other than exonic SNPs in the gene, only 3 were polymorphic among all the populations. Haplotype distribution, based on all the polymorphic SNPs, was clarified to be generally varied in an ethnic-dependent manner. Thus, the genetic aspects of DNASE1 with regard to all the SNPs in wide-ranging ethnic groups could be first demonstrated. Further, there was no correlation of all the polymorphic SNPs other than nonsynonymous ones with serum DNase I activity levels. Polymorphic SNPs other than the exonic SNPs might not be directly related to common diseases through alterations in in vivo levels of the activity.  相似文献   
52.
PIWI-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs that form the piRNA-induced silencing complex (piRISC) in the germ line of many animal species. The piRISC protects the integrity of the genome from invasion by 'genomic parasites'--transposable elements--by silencing them. Owing to their limited expression in gonads and their sequence diversity, piRNAs have been the most mysterious class of small non-coding RNAs regulating RNA silencing. Now, much progress is being made into our understanding of their biogenesis and molecular functions, including the specific subcellular compartmentalization of the piRNA pathway in granular cytoplasmic bodies.  相似文献   
53.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   
54.
We characterized the expression profiles of LjHb1 and LjHb2, non-symbiotic hemoglobin (non-sym-Hb) genes of Lotus japonicus. Although LjHb1 and LjHb2 showed 77% homology in their cDNA sequences, LjHb2 is located in a unique position in the phylogenetic tree of plant Hbs. The 5'-upstream regions of both genes contain the motif AAAGGG at a position similar to that in promoters of other non-sym-Hb genes. Expression profiles obtained by using quantitative RT-PCR showed that LjHb1 and LjHb2 were expressed in all tissues of mature plants, and expression was enhanced in mature root nodules. LjHb1 was strongly induced under both hypoxic and cold conditions, and by the application of nitric oxide (NO) donor, whereas LjHb2 was induced only by the application of sucrose. LjHb1 was also induced transiently by the inoculation with the symbiotic rhizobium Mesorhizobium loti MAFF303099. Observations using fluorescence microscopy revealed the induction of LjHb1 expression corresponded to the generation of NO. These results suggest that non-sym-Hb and NO have important roles in stress adaptation and in the early stage of legume-rhizobium symbiosis.  相似文献   
55.
A series of N-methyl-bisindolylmaleimide derivatives was synthesized and evaluated as cell death inhibitors. N-Methyl-2-[1-(3-aminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide (21) was the most potent inhibitor of H2O2-induced necrotic death of human leukemia HL60 cells among them.  相似文献   
56.
In order to investigate the cellular system of the freshwater sponge, Ephydatia fluviatilis, we isolated a molecular marker for the most prominent cell type, the choanocyte. After feeding sponge with fluorescent beads, fluorescent-labeled choanocytes were collected by fluorescence activated cell sorting (FACS). By protein profiling choanocyte and archeocyte (stem cell)-rich fractions, proteins characteristic of choanocyte were identified. The partial amino-acid sequence of one of the proteins characteristic of choanocyte matches the deduced amino-acid sequence of sponge expression tag (EST) clones and mouse annexin VII. These EST clones overlap and encode a protein, designated Ef annexin, which includes four annexin domains. Whole mount in situ hybridization shows Ef annexin expression in chamber-forming choanocytes in 7-day-old sponge, leading us to conclude that Ef annexin can be used as a choanocyte marker. In the early development stage, Ef annexin expression can be detected in both large single cells, characteristic of archeocytes, and cells forming 2-, 4- and multiple-cell clusters. These results indicate that Ef annexin is initially expressed in the choanocyte-committed archeocyte which then undergoes several mitotic cell divisions to form a choanocyte chamber. This suggests that the single choanocyte chamber essentially originates from a single archeocyte.  相似文献   
57.
58.
59.
60.
We examined the effect of oxidized low-density lipoprotein (oxLDL) on the insulin secretion in the culture of HIT-T15 cell line, an islet beta-cell line derived from a hamster pancreatic tumor. In order to check the uptake of modified LDL by HIT-T15 cells, we prepared DiI-labeled native LDL (nLDL), acetylated LDL (AcLDL), and oxLDL. After the addition of each LDL into the cultures of HIT-T15 cells, fluorescence microscopic study was done. It was suggested that AcLDL and oxLDL were taken up by HIT-T15 cells, as well as nLDL. mRNA expression of the LDL receptor, CD36, and SR-B1 was detected in HIT-T15 by RT-PCR. The medium insulin level was measured in the culture of HIT-T15 cells with each LDL. oxLDL significantly reduced the insulin secretion stimulated by various concentrations of glucose, the intracellular content of insulin, and the expression of preproinsulin mRNA compared to the control cultures without LDL addition. In contrast, nLDL and AcLDL had no effect on the insulin secretion, the intracellular insulin level, or the expression of preproinsulin mRNA. MTT assay findings (reflecting cell numbers) were not different between cultures with and without LDLs. These results indicated that oxLDL disturbed the insulin metabolism of HIT-T15 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号