首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   30篇
  2022年   3篇
  2021年   10篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   6篇
  2015年   22篇
  2014年   17篇
  2013年   31篇
  2012年   42篇
  2011年   35篇
  2010年   28篇
  2009年   25篇
  2008年   29篇
  2007年   28篇
  2006年   26篇
  2005年   38篇
  2004年   17篇
  2003年   15篇
  2002年   22篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   15篇
  1997年   9篇
  1996年   3篇
  1995年   1篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有502条查询结果,搜索用时 546 毫秒
141.
Transposable elements (TEs) are major components of the intergenic regions of the genome. However, TE transposition has the potential to threaten the reproductive fitness of the organism; therefore, organisms have evolved specialized molecular systems to sense and repress the expression of TEs to stop them from jumping to other genomic loci. Emerging evidence suggests that Argonaute proteins play a critical role in this process, in collaboration with two types of cellular small RNAs: PIWI-interacting RNAs (piRNAs) of the germline and endogenous small interfering RNAs (endo-siRNAs) of the soma, both of which are transcribed from TEs themselves.  相似文献   
142.

Background

Stem cell factor (SCF) receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1) deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state), in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit) and full length crystal structure of Shp-2, a close structural counterpart of Shp-1.

Findings

Study revealed a stretch of conserved amino acids (Lys818 to Ser821) in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain.

Conclusions

This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.  相似文献   
143.
Inhibition of the human cytomegalovirus UL97 kinase by maribavir is thought to be responsible for the antiviral activity of this compound. Some mutations that confer resistance to maribavir map to UL97, however additional mutations that also confer resistance to the drug were mapped to UL27. These open reading frames share a low level of homology, yet the function of pUL27 remains unknown. A recombinant virus with a deletion in the UL27 open reading frame was reported previously to exhibit a slight replication deficit, but a more important function in vivo was hypothesized given its homology to the UL97 kinase. The potential for an important function in vivo was investigated by determining if these knockout viruses could replicate in human tissue implanted in SCID mice. None of the AD169 derived viruses replicated well in the implanted thymus/liver tissue, and is consistent with previous observations, although all of the viruses replicated to some degree in retinal tissue implants. Replication of the parent viruses was observed at 7 days post inoculation, whereas no replication was detected with any of the recombinant viruses with deletions in UL27. By day 14, replication was detected in two of the three knockout viruses and in all of the viruses by day 42. These data are consistent with minimal defects observed in cell culture, but are not consistent with an important role for UL27 in vivo. We conclude that UL27 is not required for viral replication in vivo.  相似文献   
144.
To enhance biological activities on the basis of the sugar cluster effect, a series of carbosilane dendrimers as core scaffolds for the construction of glycodendrimers was systematically synthesized from appropriate chlorosilanes by a combination of alkenylation and hydrosylation reactions. Those carbosilane dendrimers having terminal C=C double bonds underwent general hydroboration reactions to give corresponding primary polyols. Further transformations of the alcohols were then performed by mesylation followed by a displacement with NaBr to provide corresponding dendrimers with 4 to 36 bromine atoms at each terminal end. Assembly of trisaccharide moieties of globotriaosyl ceramide using alkyl halide-type carbosilane dendrimers as the core frame was conducted in liquid ammonia by a one-pot reaction involving selective removal of a benzyl group under the Birch reduction condition and subsequent S(N)2 reaction to yield a series of carbosilane dendrimers having appropriate numbers of trisaccharide moieties. These dendrimers have unique shapes and adequate numbers of terminal trisaccharide moieties. Some of the dendrimers showed unique biological activity against Stxs, which were produced by pathogenic Escherichia coli O157:H7.  相似文献   
145.
To generate industrially applicable new host cell lines for antibody production with optimizing antibody-dependent cellular cytotoxicity (ADCC) we disrupted both FUT8 alleles in a Chinese hamster ovary (CHO)/DG44 cell line by sequential homologous recombination. FUT8 encodes an alpha-1,6-fucosyltransferase that catalyzes the transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc) in an alpha-1,6 linkage. FUT8(-/-) cell lines have morphology and growth kinetics similar to those of the parent, and produce completely defucosylated recombinant antibodies. FUT8(-/-)-produced chimeric anti-CD20 IgG1 shows the same level of antigen-binding activity and complement-dependent cytotoxicity (CDC) as the FUT8(+/+)-produced, comparable antibody, Rituxan. In contrast, FUT8(-/-)-produced anti-CD20 IgG1 strongly binds to human Fcgamma-receptor IIIa (FcgammaRIIIa) and dramatically enhances ADCC to approximately 100-fold that of Rituxan. Our results demonstrate that FUT8(-/-) cells are ideal host cell lines to stably produce completely defucosylated high-ADCC antibodies with fixed quality and efficacy for therapeutic use.  相似文献   
146.
PKNalpha is a fatty acid- and Rho-activated serine/threonine protein kinase having a catalytic domain homologous to members of the protein kinase C family. Recently it was reported that PKNalpha is involved in the p38 mitogen-activated protein kinase (MAPK) signaling pathway. To date, however, how PKNalpha regulates the p38gamma MAPK signaling pathway is unclear. Here we demonstrate that PKNalpha efficiently phosphorylates MLTKalpha (MLK-like mitogen-activated protein triple kinase), which was recently identified as a MAPK kinase kinase (MAPKKK) for the p38 MAPK cascade. Phosphorylation of MLTKalpha by PKNalpha enhances its kinase activity in vitro. Expression of the kinase-negative mutant of PKNalpha inhibited the mobility shift of MLTKalpha caused by osmotic shock in SDS-PAGE. Furthermore, PKNalpha associates with each member of the p38gamma MAPK signaling pathway (p38gamma, MKK6, and MLTKalpha). These results suggest that PKNalpha functions as not only an upstream activator of MLTKalpha but also a putative scaffold protein for the p38gamma MAPK signaling pathway.  相似文献   
147.
Deletion mutants of the carrot phenylalanine ammonia-lyase gene promoter were used to survey cis-elements for their effect on expression of promoter activity by transient expression. Two putative cis-elements were required to give full activity, but a third might be the most important in regulation of the promoter by 2,4-dichlorophenoxyacetic acid. Electronic Publication  相似文献   
148.
149.
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.  相似文献   
150.
Protein kinase CK1 (formerly termed casein kinase I) is ubiquitous in eukaryotic cells and comprises a family of as many as 14 isoforms (including splice variants) in mammalian cells. Mammalian CK1delta and CK1epsilon, which are highly related to each other, are enriched at the centrosomes in interphase cells and at the spindle during mitosis. In the present study we have isolated, using the yeast two-hybrid system, a 182 amino acid residue fragment of the centrosomal and golgi N-kinase anchoring protein (CG-NAP, also known as AKAP450), which specifically interacts with CK1delta and CK1epsilon, but not with other CK1 isoforms. The 182 amino acid residue CG-NAP fragment, or full length CG-NAP, co-immunoprecipitates with CK1delta and CK1epsilon from mammalian cells. Consistent with this association, endogenous CG-NAP/AKAP450 and CK1delta co-localize in cells. Moreover, when expressed in the presence of CK1delta the 182 amino acid residue CG-NAP fragment adopts the same sub-cellular localization as CK1delta. Strikingly, attachment of the CG-NAP fragment to the plasma membrane is sufficient to re-localize a significant level of CK1delta to the membrane. These findings support a model in which sub-cellular localization of CK1delta/epsilon molecules at the centrosome is mediated, at least in part, through the action of CG-NAP/AKAP450 and provide a potential mechanism by which the contribution to cell cycle progression by CK1delta/epsilon may be regulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号