首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   39篇
  773篇
  2022年   4篇
  2021年   7篇
  2018年   5篇
  2017年   11篇
  2016年   8篇
  2015年   12篇
  2014年   29篇
  2013年   38篇
  2012年   22篇
  2011年   37篇
  2010年   19篇
  2009年   11篇
  2008年   36篇
  2007年   26篇
  2006年   43篇
  2005年   39篇
  2004年   39篇
  2003年   31篇
  2002年   30篇
  2001年   30篇
  2000年   27篇
  1999年   23篇
  1998年   12篇
  1997年   11篇
  1996年   18篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   15篇
  1991年   11篇
  1990年   16篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   15篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1979年   11篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有773条查询结果,搜索用时 15 毫秒
61.
1. As an extension of our previous study of quinacrine and its derivatives, chelating chemicals were screened to obtain more effective, better brain-permeable antiprion compounds using either prion-infected neuroblastoma cells or brain capillary endothelial cells. 2. Eleven chemicals were found to have antiprion activity. Most of them shared a common structure consisting of benzene or naphthalene at either end of an azo bond. Structure–activity data suggest that chelating activity is not necessary but might contribute to the antiprion action. 3. Chrysoidine, a representative compound found here, was about 27 times more effective in the antiprion activity and five times more efficiently permeable through the brain capillary endothelial cells than quinacrine was. 4. These chemicals might be useful as compounds for development of therapeutics for prion diseases.  相似文献   
62.
1. The present study aimed at elucidating the effect of nitric oxide (NO) on blood-brain barrier (BBB) function with mouse brain capillary endothelial (MBEC4) cells. 2. Histamine (20–100 μM) evoked NO production (1.6–7 μM) in MBEC4 cells in a dose-dependent manner. 3. The permeability coefficient of sodium fluorescein for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were increased dose-dependently by the addition of NO solutions (14 and 28 μM) every 10 min during a 30-min period. 4. The present study demonstrated that NO increased the permeability and inhibited the P-glycoprotein efflux pump of brain capillary endothelial cells, suggesting that NO plays an inhibitory role in the dynamic regulation of the BBB function.  相似文献   
63.
P120 plays an essential role in cadherin turnover. The molecular mechanism involved, however, remains only partially understood. Here, using a gene trap targeting technique, we replaced the genomic sequence of p120 with HA-tagged p120 cDNA in mouse teratocarcinoma F9 cells. In the p120 knock-in (p120KI) cells, we found that the expression level of p120 was severely reduced and that the expression level of other components of the cadherin-catenin complex was also reduced. The stable expression of various p120 mutants in p120KI cells revealed that the armadillo repeat domain of p120 is sufficient to restore the expression level of E-cadherin. In p120KI cells, internalized E-cadherin was frequently detected as large aggregates. Transient expression of wild-type p120 and mutant p120 lacking the N-terminal region induced both relocalization of E-cadherin at the cell-cell boundaries and the disappearance of cytoplasmic E-cadherin aggregates. Transient expression of mutant p120 lacking the C-terminal region, however, only induced a small increase in E-cadherin signals at the cell-cell boundary. In these cells, the cytoplasmic E-cadherin signals became brighter and the expressed mutant p120 was incorporated in the E-cadherin aggregates. These results suggested the novel function of the p120 C-terminal region in regulating the trafficking of cytoplasmic E-cadherin.  相似文献   
64.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 microg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 microg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 mug Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 microg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   
65.
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser332 by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser332 by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.  相似文献   
66.
67.
Compounds that regulate the function(s) of nuclear receptors (NRs) are useful for biological studies and as candidate therapeutic agents. Most such compounds are agonists or antagonists. On the other hand, we have developed specific protein degradation inducers, which we designated as SNIPERs (Specific and Nongenetic IAPs-dependent Protein ERasers), for selective degradation of target proteins. SNIPERs are hybrid molecules consisting of an appropriate ligand for the protein of interest, coupled to a ligand for inhibitor of apoptosis proteins (IAPs), which target the bound protein for polyubiquitination and proteasomal degradation. We considered that protein knockdown with SNIPERs would be a promising alternative approach for modulating NR function. In this study, we designed and synthesized degradation inducers targeting retinoic acid receptor (RAR), estrogen receptor (ER), and androgen receptor (AR). These newly synthesized RAR, ER, and AR SNIPERs, 9, 11, and 13, respectively, were confirmed to significantly reduce the levels of the corresponding NRs in live cells.  相似文献   
68.
A protein function is carried out by a specific domain localized at a specific position. In the present study, we report that, within a gene, a specific amino acid sequence can move between a certain position and another position. This was discovered when the sequences of restriction-modification systems within the bacterial species Helicobacter pylori were compared. In the specificity subunit of Type I restriction-modification systems, DNA sequence recognition is mediated by target recognition domain 1 (TRD1) and TRD2. To our surprise, several sequences are shared by TRD1 and TRD2 of genes (alleles) at the same locus (chromosomal location); these domains appear to have moved between the two positions. The gene/protein organization can be represented as x-(TRD1)-y-x-(TRD2)-y, where x and y represent repeat sequences. Movement probably occurs by recombination at these flanking DNA repeats. In accordance with this hypothesis, recombination at these repeats also appears to decrease two TRDs into one TRD or increase these two TRDs to three TRDs (TRD1-TRD2-TRD2) and to allow TRD movement between genes even at different loci. Similar movement of domains between TRD1 and TRD2 was observed for the specificity subunit of a Type IIG restriction enzyme. Similar movement of domain between TRD1 and TRD2 was observed for Type I restriction-modification enzyme specificity genes in two more eubacterial species, Streptococcus pyogenes and Mycoplasma agalactiae. Lateral domain movements within a protein, which we have designated DOMO (domain movement), represent novel routes for the diversification of proteins.  相似文献   
69.
A DNA fragment encoding a hemolytic factor was cloned from the parasitic spirochete Leptospira interrogans serovar autumnalis strain Congo 21-543. Initial clones were isolated by screening a genomic library in pBR322 in Escherichia coli for hemolytic activity. Hemolytic activity was coded by a 4.5 kilobase BamHI-HindIII fragment. Southern hybridization with DNAs from other strains of Leptospira using this gene as a probe showed that DNAs from non-parasitic strains failed to hybridize with the probe, whereas those from all parasitic strains tested had the sequence which hybridize to the probe.  相似文献   
70.
cGMP-dependent protein kinase phosphorylates and inactivates RhoA   总被引:15,自引:0,他引:15  
Small GTPase Rho and cGMP/cGMP-dependent protein kinase (cGK) pathways exert opposing effects in specific systems such as vascular contraction and growth. However, the direct interaction between these pathways has remained elusive. We demonstrate that cGK phosphorylates RhoA in vitro at Ser188, the same residue phosphorylated by cAMP-dependent protein kinase. In HeLa cells transfected with constitutively active cGK (C-cGK), stress fiber formation induced by lysophosphatidic acid or V14RhoA was blocked. By contrast, C-cGK failed to inhibit stress fiber formation in cells transfected with mutant RhoA with substitution of Ser188 to Ala. C-cGK did not affect actin reorganization induced by Rac1 or Rho-associated kinase, one of the effectors for RhoA. Furthermore, C-cGK expression inhibited the membrane translocation of RhoA. Collectively, our findings suggest that cGK phosphorylates RhoA at Ser188 and inactivates RhoA signaling. The physiological relevance of the direct interaction between RhoA and cGK awaits further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号