首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   39篇
  773篇
  2022年   4篇
  2021年   7篇
  2018年   5篇
  2017年   11篇
  2016年   8篇
  2015年   12篇
  2014年   29篇
  2013年   38篇
  2012年   22篇
  2011年   37篇
  2010年   19篇
  2009年   11篇
  2008年   36篇
  2007年   26篇
  2006年   43篇
  2005年   39篇
  2004年   39篇
  2003年   31篇
  2002年   30篇
  2001年   30篇
  2000年   27篇
  1999年   23篇
  1998年   12篇
  1997年   11篇
  1996年   18篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   15篇
  1991年   11篇
  1990年   16篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   15篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1979年   11篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有773条查询结果,搜索用时 0 毫秒
101.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   
102.
Abstract— Two types of Ca2+-dependent protein kinases were demonstrated and partially purified from the cytosol fraction of rat brain by DEAE-cellulose, Sephadex G-200, and calmodulin-affinity column chromatography, using endogenous proteins and chicken gizzard myosin light chains as substrates. The molecular weights of the enzymes were 88,000 (peak I) and 120,000 (peak II) on gel filtration. Peak I had no affinity for calmodulin, whereas peak II had a high affinity for it, with a K a value of 16.7 n m . The K a values of peaks I and II for Ca2+ were 2.4 and 1.6 μ m , respectively.  相似文献   
103.
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD†, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   
104.
The phosphorylation sites of myelin basic protein from bovine brain were determined after phosphorylation with Ca2+-calmodulin-dependent protein kinase. Four phosphorylated peptides were selectively and rapidly separated by reversed-phase high-performance liquid chromatography. Partial sequencing of the phosphorylated peptides by automated Edman degradation revealed that Ca2+-calmodulin-dependent protein kinase phosphorylated serine-16, serine-70, and threonine-95 specifically, as well as serine-115, which is located on the experimental allergic encephalitogenic determinant of the protein. Of the four amino acid sequences determined, two sequences surrounding phosphorylated amino acids, -Lys-Tyr-Leu-Ala-Ser(P)16-Ala- and -Arg-Phe-Ser(P)115-Trp-Gly-, have both sides of each phosphoserine residue occupied by hydrophobic amino acids, and a basic amino acid, arginine or lysine, is located at the position 2 or 4 residues amino-terminal to the phosphoserine residue. In contrast, the two other sequences surrounding phosphorylated amino acids, -Tyr-Gly-Ser(P)70-Leu-Pro-Glu-Lys- and -Ile-Val-Thr(P)95-Pro-Arg-, have a basic amino acid at the position 2 or 4 residues carboxyl-terminal to the phosphoamino acid residue.  相似文献   
105.
Fukunaga R  Yokoyama S 《Biochemistry》2007,46(17):4985-4996
In the archaeal leucyl-tRNA synthetase (LeuRS), the C-terminal domain recognizes the long variable arm of tRNA(Leu) for aminoacylation, and the so-called editing domain deacylates incorrectly formed Ile-tRNA(Leu). We previously reported, for Pyrococcus horikoshii LeuRS, that a deletion mutant lacking the C-terminal domain (LeuRS_delta(811-967)) retains normal editing activity, but has severely reduced aminoacylation activity. In this study, we found that LeuRS_delta(811-967), but not the wild-type LeuRS, exhibited surprisingly robust deacylation activity against Ile-tRNA(Ile), correctly formed by isoleucyl-tRNA synthetase ("misediting"). Structural superposition of tRNA(Ile) onto the LeuRS x tRNA(Leu) complex indicated that Ile911, Lys912, and Glu913 of the LeuRS C-terminal domain clash with U20 of tRNA(Ile), which is bulged out as compared to the corresponding nucleotide of tRNA(Leu). The deletion of amino acid residues 911-913 of LeuRS enhanced the Ile-tRNA(Ile) deacylation activity, without affecting the Ile-tRNA(Leu) deacylation activity. These results demonstrate that the clashing between U20 of tRNA(Ile) and residues 911-913 of the LeuRS C-terminal domain is the structural mechanism that prevents misediting. In contrast, the deletion of the C-terminal domains of the isoleucyl- and valyl-tRNA synthetases impaired both the aminoacylation (Ile-tRNA(Ile) and Val-tRNA(Val) formation, respectively) and editing (Val-tRNA(Ile) and Thr-tRNA(Val) deacylation, respectively) activities, and did not cause misediting (Val-tRNA(Val) and Thr-tRNA(Thr) deacylation, respectively) activity. Thus, the requirement of the C-terminal domain for misediting prevention is unique to LeuRS, which does not recognize the anticodon of the cognate tRNA, unlike the common aminoacyl-tRNA synthetases.  相似文献   
106.

Background

In our previous study, we established the novel concept of a non-neuronal cardiac cholinergic system–cardiomyocytes produce ACh in an autocrine and/or paracrine manner. Subsequently, we determined the biological significance of this system–it played a critical role in modulating mitochondrial oxygen consumption. However, its detailed mechanisms and clinical implications have not been fully investigated.

Aim

We investigated if this non-neuronal cardiac cholinergic system was upregulated by a modality other than drugs and if the activation of the system contributes to favorable outcomes.

Results

Choline acetyltransferase knockout (ChAT KO) cells with the lowest cellular ACh levels consumed more oxygen and had increased MTT activity and lower cellular ATP levels compared with the control cells. Cardiac ChAT KO cells with diminished connexin 43 expression formed poor cell–cell communication, evidenced by the blunted dye transfer. Similarly, the ChAT inhibitor hemicholinium-3 decreased ATP levels and increased MTT activity in cardiomyocytes. In the presence of a hypoxia mimetic, ChAT KO viability was reduced. Norepinephrine dose-dependently caused cardiac ChAT KO cell death associated with increased ROS production. In in vivo studies, protein expression of ChAT and the choline transporter CHT1 in the hindlimb were enhanced after ischemia-reperfusion compared with the contralateral non-treated limb. This local effect also remotely influenced the heart to upregulate ChAT and CHT1 expression as well as ACh and ATP levels in the heart compared with the baseline levels, and more intact cardiomyocytes were spared by this remote effect as evidenced by reduced infarction size. In contrast, the upregulated parameters were abrogated by hemicholinium-3.

Conclusion

The non-neuronal cholinergic system plays a protective role in both myocardial cells and the entire heart by conserving ATP levels and inhibiting oxygen consumption. Activation of this non-neuronal cardiac cholinergic system by a physiotherapeutic modality may underlie cardioprotection through the remote effect of hindlimb ischemia-reperfusion.  相似文献   
107.
One of the most active areas of neurobiology research concerns mechanisms involved in paradigms of synaptic plasticity. A popular model for cellular leaning and memory is long term potentiation (LTP) in hippocamus. LTP requires postsynaptic influx of Ca2+ which triggers multiple biochemical pathways resulting in pre- and postsynaptic mechanisms enhancing long term synaptic efficiency. This article focuses on an acute postsynaptic Mechanism that can enhance responsiveness of glutamate receptors. Evidence is presented that calcium/calmodulin/dependent protein kinase II, the major potsynaptic density protein at excitatory glutaminergic synapses, can phosphorylate glutamate receptors and enhance ion current flowing through them. 1994 John Wiley & Sons, Inc.  相似文献   
108.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
109.
The marine diatom Rhizosolenia setigera is unique among this group of microalgae given that it is only one of a handful of diatom species that can produce highly branched isoprenoid (HBI) hydrocarbons. In our efforts to determine distinguishing molecular characteristics in R. setigera CCMP 1694 that could help elucidate the underlying mechanisms for its ability to biosynthesize HBIs, we discovered the occurrence of independent genes encoding for two isopentenyl diphosphate isomerases (RsIDI1 and RsIDI2) and one squalene synthase (RsSQS), enzymes that catalyze non‐consecutive steps in isoprenoid biosynthesis. These genes are peculiarly fused in all other genome‐sequenced diatoms to date, making their organization in R. setigera CCMP 1694 a clear distinguishing molecular feature. Phylogenetic and sequence analysis of RsIDI1, RsIDI2, and RsSQS revealed that such an arrangement of individually transcribed genes involved in isoprenoid biosynthesis could have arisen through a secondary gene fission event. We further demonstrate that inhibition of squalene synthase (SQS) shifts the flux of exogenous isoprenoid precursors towards HBI biosynthesis suggesting the competition for isoprenoid substrates in the form of farnesyl diphosphate between the sterol and HBI biosynthetic pathways in this diatom.  相似文献   
110.
A Ca2+, calmodulin-dependent protein kinase from rat brain with a MW of 640,000 phosphorylated calmodulin-sensitive phosphodiesterase from the brain cytosol. The Km of the enzyme for the phosphodiesterase was 5.0 microM and the Vmax was 212 nmol/mg/min. The amount of phosphate incorporated into the phosphodiesterase was 0.7 mol/mol subunit. Phosphorylation of the phosphodiesterase enhanced the enzyme activity by about 20% for hydrolysis of a higher concentration of cyclic AMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号