首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2718篇
  免费   196篇
  国内免费   1篇
  2915篇
  2022年   17篇
  2021年   35篇
  2020年   17篇
  2019年   15篇
  2018年   30篇
  2017年   29篇
  2016年   46篇
  2015年   70篇
  2014年   90篇
  2013年   139篇
  2012年   160篇
  2011年   166篇
  2010年   104篇
  2009年   96篇
  2008年   135篇
  2007年   160篇
  2006年   142篇
  2005年   145篇
  2004年   129篇
  2003年   134篇
  2002年   126篇
  2001年   70篇
  2000年   64篇
  1999年   77篇
  1998年   32篇
  1997年   43篇
  1996年   39篇
  1995年   34篇
  1994年   32篇
  1993年   26篇
  1992年   59篇
  1991年   41篇
  1990年   53篇
  1989年   37篇
  1988年   43篇
  1987年   29篇
  1986年   36篇
  1985年   29篇
  1984年   25篇
  1983年   20篇
  1982年   25篇
  1981年   20篇
  1980年   16篇
  1979年   18篇
  1978年   8篇
  1977年   8篇
  1976年   9篇
  1975年   8篇
  1973年   8篇
  1968年   4篇
排序方式: 共有2915条查询结果,搜索用时 0 毫秒
111.
Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.  相似文献   
112.
Food–web complexity often hinders disentangling functionally relevant aspects of food–web structure and its relationships to biodiversity. Here, we present a theoretical framework to evaluate food–web complexity in terms of biodiversity. Food network unfolding is a theoretical method to transform a complex food web into a linear food chain based on ecosystem processes. Based on this method, we can define three biodiversity indices, horizontal diversity (DH), vertical diversity (DV) and range diversity (DR), which are associated with the species diversity within each trophic level, diversity of trophic levels, and diversity in resource use, respectively. These indices are related to Shannon's diversity index (H′), where H′ = DH + DV ? DR. Application of the framework to three riverine macroinvertebrate communities revealed that D indices, calculated from biomass and stable isotope features, captured well the anthropogenic, seasonal, or other within‐site changes in food–web structures that could not be captured with H′ alone.  相似文献   
113.
Gicerin is a novel cell adhesion molecule in the immunoglobulin superfamily and has both homophilic adhesion and heterophilic adhesive activity to neurite outgrowth factor (NOF), an extracellular matrix protein in the laminin family. We investigated the possible involvement of gicerin in oviductal development, regeneration, and metastasis of oviductal adenocarcinomas of the chicken. In the oviductal epithelium, gicerin was expressed strongly during development, disappeared after maturation, and reappeared during regeneration. NOF was constitutively expressed in the basement membrane of the epithelium. These molecules were expressed strongly in oviductal adenocarcinomas in both primary and metastatic lesions in the mesentery. An anti-gicerin antibody inhibited the attachment of adenocarcinoma cells to the mesentery in vitro. Many cells migrated from adenocarcinoma tissues on NOF, which were inhibited by an anti-gicerin antibody. These results suggest that gicerin might play a role in oviductal development and regeneration and also in the metastasis of adenocarcinomas.  相似文献   
114.
115.
Overexpression of neuropeptide Y (NPY) and its receptors has been found in various cancers. In our previous study, we demonstrated expression of NPY Y5 receptor (Y5R) in various breast cancer cell lines along with Y1 receptor. In Y5R expressing BT-549 cells, NPY induced cell proliferation that was blocked by Y5R-selective antagonist CGP1683A (CGP). Here, NMR-based metabonomics was used to monitor the metabolic profile of BT-549 cells in the presence of NPY and CGP to assess the effect of Y5R activation and inhibition during NPY-induced cell proliferation. To study changes in intra and extra cellular metabolites in response to various treatments, 1D 1H-NMR spectra of both hydrophilic cell extracts and growth medium were recorded from BT-549 with three treatments: (1) NPY, (2) CGP, and (3) CGP followed by NPY (CGP/NPY). Principal component analysis and statistical significance analysis indicated changes in intracellular concentrations of seven metabolites in hydrophilic cell extracts with NPY treatment: decreases in lactate, succinate, myo-inositol, and creatine, and increases in acetate, glutamate, and aspartate. A significant increase in intracellular lactate level and attenuation of other metabolites to baseline was detected in CGP/NPY group. Also, significant decreases in lactate and increases in pyruvate were observed in growth medium from NPY treated cells. Based on the metabonomics analysis, Y5R activation induces cell proliferation by increasing the rate of glycolysis, glutaminolysis, and TCA cycle. Inhibition of Y5R by CGP counteracts NPY-induced changes in cellular metabolites. These changes may play a role in cell proliferation and migration by NPY through Y5R activation.  相似文献   
116.
Theanine, r-glutamylethylamide, is one of the major components of amino acids in Japanese green tea. Effect of theanine on brain amino acids and monoamines, and the striatal release of dopamine (DA) was investigated. Determination of amino acids in the brain after the intragastric administration of theanine showed that theanine was incorporated into brain through blood-brain barrier via leucine-preferring transport system. The concentrations of norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole acetic acid (5HIAA) in the brain regions were unaffected by the theanine administration except in striatum. Theanine administration caused significant increases in serotonin and/or DA concentrations in the brain, especially in striatum, hypothalamus and hippocampus. Direct administration of theanine into brain striatum by microinjection caused a significant increase of DA release in a dose-dependent manner. Microdialysis of brain with calcium-free Ringer buffer attenuated the theanine-induced DA release. Pretreatment with the Ringer buffer containing an antagonist of non-NMDA (N-methyl-D-aspartate) glutamate receptor, MK-801, for 1 hr did not change the significant increase of DA release induced by theanine. However, in the case of pretreatment with AP-5, (±)-2-amino-5-phosphonopentanoic acid; antagonist of NMDA glutamate receptor, the theanine-induced DA release from striatum was significantly inhibited. These results suggest that theanine might affect the metabolism and/or the release of some neurotransmitters in the brain, such as DA.  相似文献   
117.
The biological control of flocculation interactions by factors related to growth under different conditions of aeration was documented with a new assay for flocculence. The degree of flocculence expressed in a genetically defined Saccharomyces cerevisiae strain (FLO1/FLO1 ade1/ade1) remained constant during aerobic growth but varied with aeration. Flocculence was repressed in anaerobically growing cells but was induced in stationary cells or cells returned to aerobic growth. Repression was correlated with the selective inactivation of cell surface lectin-like components. The changes in flocculence were accompanied by changes in 16 extractable proteins separated by electrophoresis; however, a clear correlation between specific protein bands and flocculence could not be established. The study clearly demonstrated that the phenotypic expression of FLO1 could be reproducibly manipulated for experimental purposes by aeration alone.  相似文献   
118.
In vitro salt tolerant rice plants established by step up treatment with 0.5, 1.0, 1.5 and 2.0 % NaCl at 3-week intervals were examined to determine whether they could grow in potted paddy soil containing 0, 0.55 or 0.75 % NaCl till harvesting. All the control plants were necrotic by the 4th week in the culture. At the 10th week of culture, 100 % of the salt-tolerant plants subjected to 0 or 0.55 % NaCl survived, and 78 % of the plants at 0.75 % NaCl. The Na+ and Cl contents in the leaves of salt-tolerant plants grown at 0.55 and 0.75 % NaCl were about 4 times of those without NaCl. The ion contents in non-tolerant plants and seedling plants were 10 to 12 times of those in 0 % NaCl treatment. One of the hypotheses to explain the present data is that the in vitro step up salt selection induces the capability to maintain no lethal concentration of NaCl in the leaves.  相似文献   
119.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   
120.
Four analogs of succinoyl trehalose lipid-3 (STL-3)with saturated even-number or odd-number carbonchains, and unsaturated or halogenated fatty acidswere examined for their ability to inhibit the growthand induce the differentiation of HL-60 humanpromyelocytic leukemia cells. The optimalconcentration of STL-3 at which such activities wererecognized was closed to the critical micelleconcentration of STL-3. Analog of STL-3 witheven-number or odd-number carbon chain and unsaturatedfatty acids strongly inhibited growth and induced thedifferentiation of HL-60 cells, as evaluated in termsof nitroblue tetrazilium-reducing activity and theappearance of the CD36 antigen. An analog of STL-3with halogenated fatty acids significantly inhibitedproliferation but only induced the differentiation ofHL-60 cells. Our results indicate that the effects ofSTL-3 and its analogs on HL-60 cells depend on thestructure of the hydrophobic moiety of STL-3.These authors contributed equally to this work  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号