首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1881篇
  免费   145篇
  2026篇
  2023年   20篇
  2022年   33篇
  2021年   58篇
  2020年   24篇
  2019年   58篇
  2018年   48篇
  2017年   51篇
  2016年   52篇
  2015年   100篇
  2014年   95篇
  2013年   132篇
  2012年   152篇
  2011年   151篇
  2010年   87篇
  2009年   88篇
  2008年   112篇
  2007年   126篇
  2006年   104篇
  2005年   99篇
  2004年   89篇
  2003年   101篇
  2002年   93篇
  2001年   23篇
  2000年   20篇
  1999年   11篇
  1998年   22篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1989年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
  1953年   1篇
排序方式: 共有2026条查询结果,搜索用时 0 毫秒
31.
Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6 h after induction of mutant uracil-N-glycosylase and by 12 h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144 h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and “foaming” of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.  相似文献   
32.
MCPH1 encodes BRCT-containing protein MCPH1/Microcephalin/BRIT1, mutations of which in humans cause autosomal recessive disorder primary microcephaly type 1 (MCPH1), characterized by a congenital reduction of brain size particularly in the cerebral cortex. We have shown previously that a deletion of Mcph1 in mice results in microcephaly because of a premature switch from symmetric to asymmetric division of the neuroprogenitors, which is regulated by MCPH1's function in the centrosome. Because MCPH1 has been implicated in ATM and ATR-mediated DNA damage response (DDR) and defective DDR is often associated with neurodevelopmental diseases, we wonder whether the DDR-related function of MCPH1 prevents microcephaly. Here, we show that a deletion of Mcph1 results in a specific reduction of the cerebral cortex at birth, which is persistent through life. Due to an effect on premature neurogenic production, Mcph1-deficient progenitors give rise to a high level of early-born neurons that form deep layers (IV–VI), while generate less late-born neurons that form a thinner outer layer (II–III) of the cortex. However, neuronal migration seems to be unaffected by Mcph1 deletion. Ionizing radiation (IR) induces a massive apoptosis in the Mcph1-null neocortex and also embryonic lethality. Finally, Mcph1 deletion compromises homologous recombination repair and increases genomic instability. Altogether, our data suggest that MCPH1 ensures proper neuroprogenitor expansion and differentiation not only through its function in the centrosome, but also in the DDR.  相似文献   
33.
34.
Recombinase-mediated cassette exchange, or RMCE, is a clean approach of gene delivery into a desired chromosomal location, as it is able to insert only the required sequences, leaving behind the unwanted ones. RMCE can be mediated by a single site-specific DNA recombinase or by two recombinases with different target specificities (dual RMCE). Recently, using the Flp–Cre recombinase pair, dual RMCE proved to be efficient, provided the relative ratio of the enzymes during the reaction is optimal. In the present report, we analyzed how the efficiency of dual RMCE mediated by the Flp–Int (HK022) pair depends on the variable input of the recombinases—the amount of the recombinase expression vectors added at transfection—and on the order of the addition of these vectors: sequential or simultaneous. We found that both in the sequential and the simultaneous modes, the efficiency of dual RMCE was critically dependent on the absolute and the relative concentrations of the Flp and Int expression vectors. Under optimal conditions, the efficiency of ‘simultaneous’ dual RMCE reached ∼12% of the transfected cells. Our results underline the importance of fine-tuning the reaction conditions for achieving the highest levels of dual RMCE.  相似文献   
35.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   
36.
Abstract

Oligonucleotides 3′-d(GT)5-(CH2CH2O)3-d(GT)5-3′ (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140–142 (1992)]. Four d(GT)5 strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3′-dG(TG)4G-(CH2CH2O)3- dG(GT)4G-3′ (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G·G and T·T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dynam. 18, 493–503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (τ) of Et:qGT (q = 0.15 ±0.01 and τ = 24 ±1 ns) and Et:hp-GT (q = 0.10 ± 0.01 and τ = 16.5 ± 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient ω = 3.9 ± 0.1 and the binding constant K= (6.4 ± 0.1)·10M?1. The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of inerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732–739 (2001)]. The anticooperative type of Et binding was observed in case of hp- GT ps-DNA, with the maximum number of bound Et molecules, N = 4 ÷ 5, and the association constant K = (1.5 ± 0.1)·105 M?1. Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.  相似文献   
37.
Cytokinins are ubiquitous plant hormones; their signal is perceived by sensor histidine kinases—cytokinin receptors. This review focuses on recent advances on cytokinin receptor structure, in particular sensing module and adjacent domains which play an important role in hormone recognition, signal transduction and receptor subcellular localization. Principles of cytokinin binding site organization and point mutations affecting signaling are discussed. To date, more than 100 putative cytokinin receptor genes from different plant species were revealed due to the total genome sequencing. This allowed us to employ an evolutionary and bioinformatics approaches to clarify some new aspects of receptor structure and function. Non-transmembrane areas adjacent to the ligand-binding CHASE domain were characterized in detail and new conserved protein motifs were recovered. Putative mechanisms for cytokinin-triggered receptor activation were suggested.  相似文献   
38.
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N 1,N 3-dimethyl-N 1-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15–20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1–2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5–15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14–16 h. In the next 8–10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267–288, 1979).  相似文献   
39.
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.  相似文献   
40.
A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325–525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号