首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   9篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   14篇
  2014年   14篇
  2013年   4篇
  2012年   18篇
  2011年   18篇
  2010年   14篇
  2009年   4篇
  2008年   13篇
  2007年   15篇
  2006年   15篇
  2005年   18篇
  2004年   7篇
  2003年   12篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
71.
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.  相似文献   
72.
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm(2) for PCA and 2500 cm(2) for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems.  相似文献   
73.
Jump dilution analysis is commonly used to evaluate the reversibility of inhibition and to quantify the residence time of the inhibitor–enzyme complex. During hit and lead characterization, one sometimes observes apparently linear progress curves after jump dilution that display activity recoveries that are intermediate between those expected for fully reversible and irreversible inhibition. Computer simulations of progress curves after jump dilution indicate that seemingly linear progress curves can result when dealing with tight-binding inhibitors if substoichiometric concentrations of inhibitor are preincubated with enzyme. In this situation, the activity recovered is comparable to that expected for instantaneously reversible inhibitors. In addition, simulations demonstrate that intermediate values of activity recovery may be observed for compounds with modestly slow dissociation rates (i.e., residence times >0 min but ?20 min) when the attending curvature of the data is not accounted for. The observation of intermediate values of recovery can, thus, serve as an indication of either modest residence time or a contaminating inactivator within an inhibitor sample, in either case prompting greater scrutiny of the test compound.  相似文献   
74.

Background

Thrombotic antiphospholipid syndrome is defined as a complex form of thrombophilia that is developed by a fraction of antiphospholipid antibody (aPLA) carriers. Little is known about the genetic risk factors involved in thrombosis development among aPLA carriers.

Methods

To identify new loci conferring susceptibility to thrombotic antiphospholipid syndrome, a two-stage genotyping strategy was performed. In stage one, 19,000 CNV loci were genotyped in 14 thrombotic aPLA+ patients and 14 healthy controls by array-CGH. In stage two, significant CNV loci were fine-mapped in a larger cohort (85 thrombotic aPLA+, 100 non-thrombotic aPLA+ and 569 healthy controls).

Results

Array-CGH and fine-mapping analysis led to the identification of 12q24.12 locus as a new susceptibility locus for thrombotic APS. Within this region, a TAC risk haplotype comprising one SNP in SH2B3 gene (rs3184504) and two SNPs in ATXN2 gene (rs10774625 and rs653178) exhibited the strongest association with thrombotic antiphospholipid syndrome (p-value = 5,9 × 10−4 OR 95% CI 1.84 (1.32–2.55)).

Conclusion

The presence of a TAC risk haplotype in ATXN2-SH2B3 locus may contribute to increased thrombotic risk in aPLA carriers.  相似文献   
75.
Ribosomes are dynamic biological machines that perform numerous tasks during translation, the biosynthesis of proteins. Translocation, the movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) to progress in the reading frame of codons in the mRNA, takes place after the addition of each amino acid. This process involves large ribosome conformational changes, where tRNAs proceed through intermediate states. The structural characterization of these translocation intermediates has remained elusive. Cryo-electron microscopy (cryo-EM) produces three-dimensional averages, and translocating ribosomes poise distinct conformational states, and hence, structurally heterogeneous populations. During the last decade, the quest for visualization of translocation intermediates has progressed together with the development of classification tools in cryo-EM. Some of these new tools have recently been tested in ribosomal translocation, uncovering a clearer picture of the process. This success goes along with the latest advances in cryo-EM and illustrates how the technique offers multiple possibilities for studying macromolecular complexes engaged in dynamic reactions.  相似文献   
76.
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.  相似文献   
77.
Noncoding RNAs and gene silencing   总被引:26,自引:0,他引:26  
Zaratiegui M  Irvine DV  Martienssen RA 《Cell》2007,128(4):763-776
  相似文献   
78.
This study aimed to examine short-term resistance training effects of resting period length between sets on maximal number of repetitions and mean velocity over a moderate-intensity (60% of the maximum voluntary isometric contraction [MVIC]) set to failure on elbow-flexor muscles. The MVIC and surface electromyographic activity (sEMG) were also measured. Twenty-one untrained subjects were divided into 3 groups: short rest between sets (1 minute; SR), long rest between sets (4 minutes; LR), and nontraining control group (CG). The SR and LR performed 3 sets to failure in an arm-curl machine, 2 days per week for 5 weeks, with moderate loads (60-75% of the MVIC). The LR completed a significantly higher (31.6%, p < 0.05) total training volume than the SR. Both training groups enhanced the maximal number of repetitions to failure, with no significant differences in the magnitude of gains. The posttraining average velocity achieved by the SR at 40, 50, 60, 70, 80, and 90% of the total number of repetitions completed was significantly higher (p < 0.05) than the corresponding average velocity achieved on pretraining conditions, whereas no significant differences were observed in the LR. No significant changes in the MVIC or sEMG were observed in any group. We conclude that short-term elbow-flexor resistance training to failure, allowing 1 or 4 minutes of rest between sets, induces similar gains concerning local muscular endurance. Nevertheless, only the SR training approach reduced the rate of decline in the average repetition velocity during a set to failure. This can be of some importance in sport modalities in which not only the maximal number of repetitions (e.g., muscle endurance), but also a greater maintenance of high repetition velocities, may be critical for performance.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号