首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3565篇
  免费   299篇
  国内免费   2篇
  2023年   18篇
  2022年   45篇
  2021年   67篇
  2020年   41篇
  2019年   44篇
  2018年   57篇
  2017年   52篇
  2016年   94篇
  2015年   157篇
  2014年   176篇
  2013年   226篇
  2012年   260篇
  2011年   277篇
  2010年   188篇
  2009年   184篇
  2008年   253篇
  2007年   241篇
  2006年   218篇
  2005年   209篇
  2004年   210篇
  2003年   168篇
  2002年   183篇
  2001年   68篇
  2000年   40篇
  1999年   38篇
  1998年   38篇
  1997年   27篇
  1996年   23篇
  1995年   25篇
  1994年   13篇
  1993年   17篇
  1992年   16篇
  1991年   12篇
  1990年   14篇
  1989年   12篇
  1988年   15篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   7篇
  1983年   14篇
  1982年   12篇
  1981年   13篇
  1980年   3篇
  1979年   7篇
  1978年   14篇
  1977年   15篇
  1976年   7篇
  1974年   5篇
  1973年   6篇
排序方式: 共有3866条查询结果,搜索用时 283 毫秒
141.
142.
Growth of Nitrosomonas europaea on hydroxylamine   总被引:2,自引:0,他引:2  
Abstract Hydroxylamine is an intermediate in the oxidation of ammonia to nitrite, but until now it has not been possible to grow Nitrosomonas europaea on hydroxylamine. This study demonstrates that cells of N. europaea are capable of growing mixotrophically on ammonia and hydroxylamine. The molar growth yield on hydroxylamine (4.74 g mol−1 at a growth rate of 0.03 h−1) was higher than expected. Aerobically growing cells of N. europaea oxidized ammonia to nitrite with little loss of inorganic nitrogen, while significant inorganic nitrogen losses occurred when cells were growing mixotrophically on ammonia and hydroxylamine. In the absence of oxygen, hydroxylamine was oxidized with nitrite as electron acceptor, while nitrous oxide was produced. Anaerobic growth of N. europaea on ammonium, hydroxylamine and nitrite could not be observed at growth rates of 0.03 h−1 and 0.01 h−1.  相似文献   
143.
The advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.Subject terms: Environmental microbiology, Sequencing, Microbiology  相似文献   
144.
145.
146.
Due to the recent enactment of a stricter drinking water standard for arsenate, large quantities of arsenate-laden drinking water residuals will be disposed in municipal landfills. The objective of this study was to determine the role of methanogenic consortia on the conversion of arsenate. Methanogenic conditions commonly occur in mature municipal solid waste landfills. The results indicate the rapid and facile reduction of arsenate to arsenite in methanogenic sludge. Endogenous substrates in the sludge were sufficient to support the reductive biotransformation. However the rates of arsenate reduction were stimulated by the addition of exogenous electron donating substrates, such as H2, lactate or a mixture of volatile fatty acids. A selective methanogenic inhibitor stimulated arsenate reduction in microcosms supplied with H2, suggesting that methanogens competed with arsenate reducers for the electron donor. Rates of arsenate reduction increased with arsenate concentration up to 2 mM, higher concentrations were inhibitory. The electron shuttle, anthraquinone-2,6-disulfonate, used as a model of humic quinone moieties, was shown to significantly increase rates of arsenate reduction at substoichiometric concentrations. The presence of sulfur compounds, sulfate and sulfide, did not affect the rate of arsenate transformation but lowered the yield of soluble arsenite, due to the precipitation of arsenite with sulfides. The results taken as a whole suggest that arsenate disposed into anaerobic environments may readily be converted to arsenite increasing the mobility of arsenic. The extent of the increased mobility will depend on the concentration of sulfides generated from sulfate reduction.  相似文献   
147.
PURPOSE OF REVIEW: To provide up-to-date information on the most recent advances in the epidemiology, biochemistry and molecular biology of the antiatherosclerotic enzyme paraoxonase 1. RECENT FINDINGS: Case-control and prospective studies published during the period covered by this review have indicated that paraoxonase 1 'status' (i.e. activity and/or concentration) was a more important coronary heart disease risk factor than the paraoxonase 1 genetic polymorphisms. New findings on the role of paraoxonase 1 in homocysteine metabolism are reviewed, as are advances in the nutritional and pharmacological regulation of paraoxonase 1. The recent controversy over whether paraoxonase 1 or platelet-activating factor acetylhydrolase is responsible for the antioxidant activity of high-density lipoprotein is also addressed. SUMMARY: In the light of recent findings, we believe that genetic epidemiological studies of the paraoxonase 1 polymorphisms in relation to coronary heart disease should no longer be undertaken unless they are very large and prospective in nature. More research should be undertaken to discover the biochemical mechanisms underlying the mode of action of paraoxonase 1 and the factors which modulate its activity and/or concentration. SPONSORSHIP: Bharti Mackness is funded by the International HDL Research Awards Programme. All authors receive research funding from the British Heart Foundation and Diabetes UK.  相似文献   
148.
The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.  相似文献   
149.
Cultivation of Walsby's square haloarchaeon   总被引:10,自引:0,他引:10  
The square haloarchaea of Walsby (SHOW group) dominate hypersaline microbial communities but have not been cultured since their discovery 25 years ago. We show that natural water dilution cultures can be used to isolate members of this group and, once in pure culture, they can be grown in standard halobacterial media. Cells display a square morphology and contain gas vesicles and poly-beta-hydroxybutyrate (PHB) granules. The 16S rRNA gene sequence was >99% identical to other SHOW group sequences. They prefer high salinities (23-30%), and can grow with a doubling time of 1-2 days in rich media. The ability to culture SHOW group organisms makes it possible to study, in a comprehensive way, the microbial ecology of salt lakes.  相似文献   
150.
Chemical investigations of a microfungus Xylaria sp. isolated from the Australian rainforest tree Glochidion ferdinandi have afforded two new natural products, 2-hydroxy-6-methyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (1) and 2-hydroxy-6-hydroxymethyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (2). Compound 1 has previously been synthesised but only partially characterised. Methylation of 1 using diazomethane afforded the crystalline compound 2,8-dimethoxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester (3), whose structure was determined by single crystal X-ray analysis. This paper reports the full spectroscopic characterisation of compounds 1-3 by NMR, UV, IR and MS data. All compounds were inactive in a brine shrimp lethality assay and several antimicrobial screens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号