首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   39篇
  796篇
  2022年   5篇
  2021年   6篇
  2019年   5篇
  2018年   10篇
  2017年   14篇
  2016年   3篇
  2015年   19篇
  2014年   25篇
  2013年   26篇
  2012年   43篇
  2011年   37篇
  2010年   16篇
  2009年   28篇
  2008年   45篇
  2007年   41篇
  2006年   41篇
  2005年   58篇
  2004年   50篇
  2003年   41篇
  2002年   35篇
  2001年   20篇
  2000年   27篇
  1999年   13篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   4篇
  1994年   12篇
  1993年   4篇
  1992年   10篇
  1991年   13篇
  1990年   11篇
  1989年   15篇
  1988年   11篇
  1987年   11篇
  1986年   11篇
  1985年   3篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1979年   5篇
  1978年   3篇
  1977年   10篇
  1976年   6篇
  1975年   5篇
  1974年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有796条查询结果,搜索用时 15 毫秒
41.
We constructed polyubiquitin derivatives that contain a tandem repeat of ubiquitins and were insensitive to ubiquitin hydrolases. They were designated tandem ubiquitin (tUb) with the number of repeats, such as tUb2. When tUbs were expressed under the control of the GAL1 promoter in the wild-type yeast strain, growth was strongly inhibited. Under these conditions, the degradation of N-end rule substrates, a UFD substrate and Gcn4 was inhibited, indicating that the tUb inhibits 26S proteasome activity. Consistent with this, tUb binds to the 26S proteasome. We showed that tUb inhibited the in vitro degradation of polyubiquitinylated Sic1 by the 26S proteasome. When tUB6 messenger RNA was injected into Xenopus embryos, cell division was inhibited, suggesting that tUb can be used as a versatile inhibitor of the 26S proteasome.  相似文献   
42.
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.  相似文献   
43.
The effect of postprandial body posture on digestion and absorption of dietary carbohydrate were examined through breath hydrogen test on 6 female subjects. During the experiment, the participants either sat on a chair or lay on their backs for the first 4 hr (from 08:00 to 12:00) after eating the test breakfast meal. They then remained sedentary on a sofa for 6 hr (12:00 to 18:00). Participants' end alveolar breath samples were collected for 10 hr (every 15 min from 08:00 to 12:30, and then every 30 min until 18:00). The experiment was conducted on two consecutive days using a randomized, crossover study design. The results demonstrated that in the supine position orocecal transit time of the test meal was significantly slower than in the sitting position (260 +/- 21 min and 238 +/- 20 min, respectively, p < 0.01). In addition, afternoon breath hydrogen excretion due to a partial malabsorption of dietary carbohydrate and its fermentation in the colon was significantly larger in the sitting position (144.0 +/- 24.1 ppm.hr) than in the supine position (110.0 +/- 26.1 ppm.hr, p < 0.05). These results support the hypothesis that there was a marked effect of postprandial body posture on the function of the digestive system. The present findings suggest that the postprandial supine position is preferable to the sitting position for the digestion and absorption of dietary carbohydrate.  相似文献   
44.
Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.  相似文献   
45.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   
46.
47.
Mitochondrial DNA (mtDNA) is highly susceptible to mutations that result in polymorphisms and diseases including diabetes. We analyzed heteroplasmy, polymorphisms related to diabetes, and complementation by fusogenic proteins. Cytoplast fusion and microinjection allow, defects in mutated mtDNA inside a heteroplasmic cell to be complemented by fusing two mitochondria via human fusogenic proteins. We characterized three hfzos as well as two OPAls that prevent apoptosis. Two coiled coil domains and GTPase domains in these fusogenic proteins regulate membrane fusion. The hfzo genes were expressed mainly in the brain and in muscle that are postmitotic, but not in the pancreas. Under the influence of polymorphisms of mtDNA and nDNA, the vicious circle of reactive oxygen species and mutations in cell can be alleviated by mitochondrial fusion.  相似文献   
48.
We isolated stable cell lines, designated as mitochondrial cells, from cybrids obtained by fusing mitochondria-less HeLa cells with platelets from patients with Leigh syndrome, a subtype of mitochondrial encephalomyopathy. The cells contain a pathogenic point mutation, T9176C, in the mitochondrial DNA. Hematoxylin-eosin staining, confocal fluorescent microscopy and flow cytometry in fixed or living cells showed that the majority of these mitochondrial cells lack nuclear DNA and nuclei, but contain active mitochondria. Despite the absence of nuclear DNA, these cells can be continuously generated in culture. Therefore, it is likely that they arise from the minority of cells which possess a nucleus.  相似文献   
49.
We isolated a K17q8 mutant from K17 mutant cells of Bacillus stearothermophilus which contain SoxB-type cytochrome bo(3) as well as cytochrome bd but not SoxM-type cytochrome caa(3), which is the main terminal oxidase in B. stearothermophilus K1041. The respiration of K17q8 was highly sensitive to as little as 10 microM cyanide, indicating that the main terminal oxidase is cytochrome bo(3). The aerobic growth yield of K17q8 was lower than that of wild-type K1041, but higher than that of parental K17. The H(+)/O ratio of K17q8 was about 5, i.e. a little lower than the 6.1-6.5 of K1041, but higher than the 2.9-3.1 of K17 [Sone et al. (1999) J. Biosci. Bioeng. 87, 495-499]. Analyses of membrane fragments indicated that K17q8 contains about 0.2 nmol cytochrome bo(3) per mg membrane protein, and scarcely any subunits of cytochromes caa(3) and bd. From the membrane fraction of K17q8, cytochrome bo(3) was purified and shown to be composed of two subunits with apparent molecular masses of 56 and 19 kDa. The enzyme contained protoheme IX and heme O, as the main low-spin heme and high-spin heme. Analysis of the substrate specificity indicated that the high-affinity site is very specific to cytochrome c-551, a cytochrome c which is a membrane-bound lipoprotein of thermophilic Bacillus. The I(50) of purified cytochrome bo(3) was determined to be 4 microM, indicating that cytochrome bo(3) among the three terminal oxidases in B. stearothermophilus was most susceptible to cyanide. The respiration of K17q8 was mostly inhibited by the addition of cyanide at this concentration.  相似文献   
50.
Helicobacter pylori, a microaerophilic Gram-negative spiral bacterium residing in the human stomach, contains a small size soluble cytochrome c. This cytochrome c was purified from the soluble fraction of H. pylori by conventional chromatographies involving octyl-cellulose and CM-Toyopearl. Its reduced form gave an alpha absorption band at 553 nm, and thus the cytochrome was named H. pylori cytochrome c-553. The cytochrome, giving a band below 10,000 Da upon SDS-PAGE, was determined to have a mass of 8,998 by time of flight mass spectroscopy. Its N-terminal peptide sequence was TDVKALAKS---, indicating that the nascent polypeptide was cleaved to produce a signal peptide of 19 amino acid residues and a mature protein composed of 77 amino acid residues. The cb-type cytochrome c oxidase oxidized ferrocytochrome c-553 of this bacterium actively (V(max) of about 250 s(-1)) with a small K(m) (0.9 microM). Analysis of the effect of the salt concentration on the oxidase activity indicated that oxidation of cytochrome c-553 is highly inhibited under high ionic conditions. The amino acid sequence of H. pylori cytochrome c-553 showed the closest similarity to that of Desulfovibrio vulgaris cytochrome c-553, and these sequences showed a weak relationship to that of the cytochrome c(8)-group among class I cytochromes c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号