首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   3篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   15篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   8篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
71.
The present study investigated the effect of bilingualism on the two widely used developmental neuropsychological test batteries Wechsler Intelligence Scale for Children – Fourth Edition (WISC-IV) and A Developmental Neuropsychological Assessment, Second Edition (NEPSY-II) in children. The sample consisted of 100 Finland-Swedish children in two age groups. About half (n = 52) of the participants were early simultaneous bilinguals, and the other half (n = 48) were monolinguals. As no Finland-Swedish versions of the tests are available at the moment, both tests were translated and adapted to suit this population. The results revealed no difference in the performance between bilingual and monolingual children. This speaks against a cognitive advantage in bilingual children and indicates that development of separate norms for monolingual and bilingual children is not needed for clinical use.  相似文献   
72.
73.
Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.  相似文献   
74.
A type 2 vaccine-derived poliovirus (VDPV), differing from the Sabin 2 strain at 8.6% (78/903) of VP1 nucleotide positions, was isolated from seawater collected from a seaport in São Paulo State, Brazil. The P1/capsid region is related to the Sabin 2 strain, but sequences within the 5''-untranslated region and downstream of the P1 region were derived from recombination with other members of Human Enterovirus Species C (HEV-C). The two known attenuating mutations had reverted to wild-type (A481G in the 5''-UTR and Ile143Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype and had accumulated amino acid substitutions in neutralizing antigenic (NAg) sites 3a and 3b. The date of the initiating OPV dose, estimated from the number of synonymous substitutions in the capsid region, was approximately 8.5 years before seawater sampling, a finding consistent with a long time of virus replication and possible transmission among several individuals. Although no closely related type 2 VDPVs were detected in Brazil or elsewhere, this VDPV was found in an area with a mobile population, where conditions may favor both viral infection and spread. Environmental surveillance serves as an important tool for sensitive and early detection of circulating poliovirus in the final stages of global polio eradication.  相似文献   
75.
Seasonal variation in leaf phenolic composition may be important for acclimation of plants to seasonal changes in their biotic and abiotic environment. For a realistic assessment of how plants respond to solar UV‐B (280–315 nm) and UV‐A (315–400 nm) radiation, seasonal variation in both environment and plant responses needs to be taken into account. This also has implications for studies concerning stratospheric ozone depletion and resulting increased UV‐B radiation, as other environmental variables and/or plant phenology could interact with UV radiation. To elucidate this, we established a field experiment using plastic films attenuating different parts of the solar UV spectrum. The concentration of individual phenolic compounds was measured during one growing season in leaves of grey alder (Alnus incana) and white birch (Betula pubescens) trees. Our results showed changes in concentration of, e.g. hydrolyzable tannins in birch that suggest an effect of UV‐A alone and e.g. chlorogenic acids in alder indicate a quadratic effect of UV‐B irradiance and both linear and quadratic effect for UV‐A in second‐degree polynomial fits. Further, there was interaction between treatment and sampling time for some individual metabolites; hence, the UV response varied during the season. In addition to the UV effects, three temporal patterns emerged in the concentrations of particular groups of phenolics. Possible implications for both sampling methods and timing are discussed. Moreover, our results highlight differences in responses of the two tree species, which are taken to indicate differences in their ecological niche differentiation.  相似文献   
76.
The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with β1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity.  相似文献   
77.
C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of signaling response and the selectivity of this response among DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG binding affinities. In this work, we characterized the C1B domain of protein kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or the sub-nanosecond dynamics of the protein backbone, but resulted in a > 100-fold increase in DAG binding affinity and a substantial change in microsecond timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between wild type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue (Gln128) in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan side chain into the water-lipid interface are important factors that modulate the DAG binding properties of the C1 domains.  相似文献   
78.
The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions.  相似文献   
79.
The ubiquitously expressed Calpains 1 and 2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large subunit and a small regulatory subunit encoded by the gene Capns1. To investigate a role for the calpain small subunit in cells of the osteoblast lineage in vivo, we previously generated osteoblast-specific Capns1 knockout mice and characterized their bone phenotype. In this study, we further examined effects of low calcium and high fat diets on their bone, fat, and glucose homeostasis.Osteoblast-specific Capns1 knockout mice showed significantly reduced serum levels of total and uncarboxylated osteocalcin, and this was presumably due to their impaired bone formation and bone resorption. The reduced bone resorptive function of the mutant mice was also significant under a low calcium diet. Thus, these results suggest that reduced uncarboxylated osteocalcin levels of mutant mice were, at least in part, due to their osteoporotic bone with impaired bone resorptive function. Interestingly, unlike osteocalcin knockout mice, mutant mice on a normal chow diet were leaner than control littermates; this was likely due to their reduced food intake and overall lower energy homeostasis. To test this hypothesis, we next provided mutant mice with a high fat diet and further examined an effect of their reduced uncarboxylated osteocalcin levels on body composition and glucose metabolism. The average mean body weight of mutant mice became indistinguishable with that of controls after 2 weeks on a high fat diet, and continued to show an upward trend, at least, up to 6 weeks. Moreover, mutant mice on a high fat diet exhibited a significant increase in serum levels of leptin and resistin, adipocyte-specific adipokines, and developed impaired glucose tolerance. Collectively, mice with osteoporosis and reduced bone resorptive function showed reduced serum uncarboxylated osteocalcin levels and were susceptible to increase body adiposity and develop impaired glucose tolerance under a high fat diet.  相似文献   
80.
The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号