首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   90篇
  2023年   3篇
  2022年   7篇
  2021年   27篇
  2020年   12篇
  2019年   26篇
  2018年   37篇
  2017年   29篇
  2016年   31篇
  2015年   58篇
  2014年   78篇
  2013年   80篇
  2012年   130篇
  2011年   120篇
  2010年   61篇
  2009年   57篇
  2008年   128篇
  2007年   101篇
  2006年   96篇
  2005年   90篇
  2004年   84篇
  2003年   103篇
  2002年   81篇
  2001年   14篇
  2000年   19篇
  1999年   18篇
  1998年   11篇
  1997年   7篇
  1996年   9篇
  1995年   11篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1978年   3篇
  1975年   5篇
  1974年   4篇
  1971年   3篇
  1969年   2篇
  1960年   1篇
  1954年   1篇
排序方式: 共有1623条查询结果,搜索用时 265 毫秒
991.
Ferredoxin-NADP(+)-oxidoreductase (FNR) mediates electron transfer between ferredoxin (Fd) and NADP(+); therefore, it is a key enzyme that provides the reducing power used in the Calvin cycle. Other than FNR, nitrite reductase, sulfite reductase, glutamate synthase, and Fd-thioredoxin reductase also accept electrons from Fd, an electron carrier protein in the stroma. Therefore, the regulation of electron partitioning in the chloroplast is important for photosynthesis and other metabolic pathways. The regulatory mechanism of electron partitioning, however, remains to be elucidated. We found, by taking advantage of a gain-of-function approach, that expression of two rice (Oryza sativa) full-length cDNAs of leaf-type FNRs (OsLFNR1 and OsLFNR2) led to altered chlorophyll fluorescence and growth in Arabidopsis (Arabidopsis thaliana) and rice. We revealed that overexpression of the OsLFNR1 and OsLFNR2 full-length cDNAs resulted in distinct phenotypes despite the high sequence similarity between them. Expression of OsLFNR1 affected the nitrogen assimilation pathway without inhibition of photosynthesis under normal conditions. On the other hand, OsLFNR2 expression led to the impairment of photosynthetic linear electron transport as well as Fd-dependent cyclic electron flow around photosystem I. The endogenous protein level of OsLFNR was found to be suppressed in both OsLFNR1- and OsLFNR2-overexpressing rice plants, leading to changes in the stoichiometry of the two LFNR isoforms within the thylakoid and soluble fractions. Thus, we propose that the stoichiometry of two LFNR isoforms plays an important role in electron partitioning between carbon fixation and nitrogen assimilation.  相似文献   
992.
993.
Mitochondrial outer membrane Bax oligomers are critical for cytochrome c release, but the role of resident mitochondrial proteins in this process remains unclear. Membrane-associated Bax has primarily been studied using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) as the solubilizing agent, as it does not induce conformational artifacts, although recent evidence indicates it may have other artifactual effects. The objective of this study was to investigate digitonin as an alternative detergent to assess Bax oligomeric state, and possible interaction with voltage-dependent anion channel (VDAC)1 in cerebellar granule neurons. VDAC1 co-immunoprecipitated with Bax in digitonin extracts from healthy and apoptotic neurons. Two-dimensional blue native-SDS-PAGE revealed five Bax and VDAC1 oligomers having similar masses from 120 to 500 kDa. The levels of two VDAC1 oligomers in Bax 1D1 immunodepleted extracts negatively correlated with levels of co-precipitated VDAC1, indicating the co-precipitated VDAC1 was derived from these oligomers. Immunodepletion with the 6A7 antibody modestly reduced the levels of Bax oligomers from apoptotic but not healthy neurons. A sixth 170 kDa oligomer containing exclusively 6A7 Bax and no VDAC1 was identified after apoptosis induction. CHAPS failed to solubilize VDAC1, and additionally yielded no distinct oligomers. We conclude that digitonin is a potentially useful detergent preserving Bax-VDAC1 interactions that may be disrupted with CHAPS.  相似文献   
994.
995.
996.
We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes.  相似文献   
997.
Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet‐B (UV‐B) radiation (280–320 nm) in the process. UV‐B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV‐B‐induced DNA lesions, and are a principal cause of UV‐B‐induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV‐B‐containing sunlight. Nuclear repair of the UV‐B‐induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near‐UV and visible light (300–500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full‐length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV‐B radiation.  相似文献   
998.
999.
1000.
We have previously demonstrated that excessive mitochondrial reactive oxygen species caused by mutations in the SDHC subunit of Complex II resulted in premature death in C. elegans and Drosophila, tumors in mouse cells and infertility in transgenic mice. We now report the generation and initial characterization of conditional transgenic mice (Tet-mev-1) using our uniquely developed Tet-On/Off system, which equilibrates transgene expression to endogenous levels. The mice experienced mitochondrial respiratory chain dysfunction that induced reactive oxygen species overproduction. The mitochondrial oxidative stress resulted in excessive apoptosis leading to low birth weight and growth retardation in the neonatal developmental phase in Tet-mev-1 mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号