首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3924篇
  免费   243篇
  国内免费   1篇
  2021年   51篇
  2020年   27篇
  2019年   49篇
  2018年   60篇
  2017年   42篇
  2016年   63篇
  2015年   95篇
  2014年   129篇
  2013年   357篇
  2012年   247篇
  2011年   207篇
  2010年   127篇
  2009年   137篇
  2008年   218篇
  2007年   200篇
  2006年   175篇
  2005年   164篇
  2004年   172篇
  2003年   192篇
  2002年   161篇
  2001年   98篇
  2000年   125篇
  1999年   122篇
  1998年   40篇
  1997年   30篇
  1996年   30篇
  1995年   30篇
  1994年   22篇
  1993年   30篇
  1992年   70篇
  1991年   64篇
  1990年   54篇
  1989年   39篇
  1988年   55篇
  1987年   36篇
  1986年   41篇
  1985年   31篇
  1984年   39篇
  1983年   30篇
  1982年   30篇
  1981年   30篇
  1980年   18篇
  1979年   19篇
  1978年   19篇
  1977年   19篇
  1975年   14篇
  1974年   19篇
  1973年   17篇
  1972年   19篇
  1967年   18篇
排序方式: 共有4168条查询结果,搜索用时 15 毫秒
991.
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.  相似文献   
992.
993.
Inflammatory cytokines, such as interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), induce the intracellular signaling pathway leading to the activation of nuclear factor κB (NF-κB). A series of eudesmane-type sesquiterpene lactones possessing an α-methylene γ-lactone group and/or an α-bromo ketone group were synthesized and evaluated for their inhibitory effects on the NF-κB-dependent gene expression and signaling pathway. Our present study reveals that eudesmane-type α-methylene γ-lactones and α-bromo ketones inhibit multiple steps in the NF-κB signaling pathway induced by IL-1α and TNF-α.  相似文献   
994.
As a part of our research program on developing novel anti-Alzheimer's disease medicines, several dihydrofuran-fused perhydrophenanthrenes (DFs) possessing a phenolic hydroxyl group were found to exhibit potent dendritic and axonal regeneration activities. Introduction of a methoxy group into the perhydrophenanthrene skeleton was successfully achieved via a PhI(OAc)(2)-mediated phenolic oxidation of a benzocyclobutene nucleus and subsequent tandem intramolecular electrocyclic reactions based on o-quinodimethane chemistry. We could reveal that a new methoxy derivative having a phenolic hydroxyl group exerted the most significant effects on the dendritic and axonal extensions in the damaged neurons, among DFs examined in this study.  相似文献   
995.
5-Thiazoleacetamide derivatives of AR122 and AR125 were screened as α-glucosidase inhibitors by in silico high-throughput screening from commercial drug-like small compound libraries. Inhibition of α-glucosidase with AR122 and AR125 is time dependent: with no preincubation, AR122 and AR125 are relatively moderate inhibitors, but interestingly, after a 120 min incubation, they were 50-fold more potent (AR122: IC(50)=2.47 μM and AR125: IC(50)=27.1 μM). Plots of ln [residual α-glucosidase activity %] versus preincubation time show a pseudo-first order kinetics for both inhibitors. Through dialysis of enzyme-inhibitor complexes, no activity recovery was shown. These results suggest that AR122 and AR125 constitute a new class of noncarbohydrate mimetic inhibitor with an irreversible mechanism.  相似文献   
996.
We recently reported that the α(2)-adrenoreceptor (AR) ligand allyphenyline (9) significantly enhanced morphine analgesia (due to its α(2C)-AR agonism), was devoid of sedative side effects (due to its α(2A)-AR antagonism), prevented and reversed morphine tolerance and dependence. To highlight the molecular characteristics compatible with this behaviour and to obtain novel agents potentially useful in chronic pain and opioid addiction management, the allyl group of 9 was replaced by substituents of moderate steric bulk (MR) and positive or negative lipophilic (π) and electronic (σ) contributions in all the possible combinations. Effective novel α(2C)-agonists/α(2A)-antagonists (2, 3, 10, 12, and 17) were obtained. This study also demonstrated that contradictory combinations of the physicochemical parameters were similarly able to induce the α(2A)-activation. Since we had previously observed that the absolute configuration affected only the potency, but not the functional profile of the ligands, we hypothesized that the α(2A)-activation was governed by a ligand preferred conformation. From a structural overlay investigation it emerged that an extended conformation appeared to be associated with dual α(2C)-agonism/α(2A)-antagonism, whereas a folded conformation associated with α(2C)-/α(2A)-agonism.  相似文献   
997.
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.  相似文献   
998.
Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.  相似文献   
999.
Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号