首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1415篇
  免费   82篇
  2023年   4篇
  2022年   10篇
  2021年   27篇
  2020年   12篇
  2019年   25篇
  2018年   37篇
  2017年   27篇
  2016年   29篇
  2015年   57篇
  2014年   78篇
  2013年   70篇
  2012年   119篇
  2011年   116篇
  2010年   57篇
  2009年   56篇
  2008年   124篇
  2007年   99篇
  2006年   92篇
  2005年   88篇
  2004年   77篇
  2003年   95篇
  2002年   74篇
  2001年   12篇
  2000年   16篇
  1999年   16篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1969年   1篇
  1961年   1篇
  1960年   1篇
  1954年   1篇
排序方式: 共有1497条查询结果,搜索用时 15 毫秒
901.
Replication fork protection complex Swi1-Swi3 and replication checkpoint mediator Mrc1 are required for maintenance of replication fork integrity during the course of DNA replication in the fission yeast Schizosaccharomyces pombe. These proteins play crucial roles in stabilizing stalled forks and activating replication checkpoint signaling pathways. Although they are conserved replication fork components, precise biochemical roles of these proteins are not known. Here we purified Mrc1 and Swi1-Swi3 proteins and show that these proteins bind to DNA independently but synergistically in vitro. Mrc1 binds preferentially to arrested fork or D-loop-like structures, although the affinity is relatively low, whereas the Swi1-Swi3 complex binds to double-stranded DNA with higher affinity. In the presence of a low concentration of Swi1-Swi3, Mrc1 generates a novel ternary complex and binds to various types of DNA with higher affinity. Moreover, purified Mrc1 and Swi1-Swi3 physically interact with each other, and this interaction is lost by mutations in the known DNA binding domain of Mrc1 (K235E,K236E). The interaction is also lost in a mutant form of Swi1 (E662K) that is specifically defective in polar fork arrest at a site called RTS1 and causes sensitivity to genotoxic agents, although the DNA binding affinity of Swi1-Swi3 is not affected by this mutation. As expected, the synergistic effect of the Swi1-Swi3 on DNA binding of Mrc1 is also lost by these mutations affecting the interaction between Mrc1 and Swi1-Swi3. Our results reveal an aspect of molecular interactions that may play an important role in replication pausing and fork stabilization.  相似文献   
902.
Sweet wheat     
The major components of storage starch are amylose and amylopectin, and in wheat, both an amylose-free mutant lacking granule-bound starch synthase I and a high-amylose mutant lacking starch synthase IIa have been produced recently. Here, we report the production of an amylose-free/ high-amylose double mutant. This double mutant has kernel and carbohydrate characteristics that are remarkably different than those of either single mutant, including a dramatically shrunken seed shape. Surprisingly, the double mutant has maltose and sucrose levels that are high enough to make it worthy of being called "sweet wheat".  相似文献   
903.
We previously reported a novel E3 ubiquitin ligase (E3), designated as c-MIR, which targets B7-2 to lysosomal degradation and down-regulates the B7-2 surface expression through ubiquitination of its cytoplasmic tail. B7-2 is well known as a costimulatory molecule for Ag presentation, suggesting that the manipulation of c-MIR expression modulates immune responses in vivo. To examine this hypothesis, we generated genetically modified mice in which c-MIR was expressed under an invariant chain (Ii) promoter. Dendritic cells derived from genetically engineered mice showed low ability to present Ags. In addition, these mice showed resistance to the onset of experimental autoimmune encephalomyelitis and an impaired development of CD4 T cells in the thymus and the periphery. These findings led us to conclude that MHC class II (MHC II) is an additional target for c-MIR. Indeed, forced expression of c-MIR in several B cell lines down-regulated the surface expression of MHC II, and down-regulation was found to depend on the presence of a single lysine residue in the cytoplasmic tail of the I-A beta-chain. In a reconstitution system using 293T cells, we found that the lysine residue at position 225 in the I-A beta-chain was ubiquitinated by c-MIR. To our knowledge, c-MIR is the first example of an E3 that is capable of inhibiting MHC II expression. Our findings suggest that c-MIR might potently regulate immune responses in vivo.  相似文献   
904.
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.  相似文献   
905.
RNA interference (RNAi) has proven to be a powerful technique to study the function of genes by producing knock-down phenotypes. Here, we report that intrathecal injection of an siRNA against the transient receptor potential vanilloid receptor 1 (TRPV1) reduced cold allodynia of mononeuropathic rats by more than 50% over a time period of approximately 5 days. A second siRNA targeted to a different region of the TRPV1 gene was employed and confirmed the analgesic action of a TRPV1 knock-down. Furthermore, siRNA treatment diminished spontaneous visceral pain behavior induced by capsaicin application to the rectum of mice. The analgesic effect of siRNA-mediated knockdown of TRPV1 in the visceral pain model was comparable to that of the low-molecular weight receptor antagonist BCTC. Our data demonstrate that TRPV1 antagonists, including TRPV1 siRNAs, have potential in the treatment of both, neuropathic and visceral pain.  相似文献   
906.
The C-6 positions of chitosan were successively modified in a highly regioselective manner. The starting material, N-phthaloyl-chitosan, was successfully converted into the corresponding 6-deoxy-6-halo derivatives by reaction with N-halosuccinimides and triphenylphosphine in N-methyl-2-pyrrolidone. The resulting chloride and bromide derivatives were then substituted with azido groups by reaction with sodium azide at 120 and 80 degrees C, respectively. The azido groups were then reduced to amines via formation of the triphenylphosphinimine intermediate followed by hydrolysis using aqueous hydrazine, which also led to the removal of the N-phthaloyl groups at the C-2 positions. This sequence gave 6-amino-6-deoxy-chitosan, which, unlike chitosan, is soluble in water at neutral pH. The synthesized 6-amino-6-deoxy-chitosan derivative was evaluated as a gene carrier, and the transfection efficiency for COS-1 cells was shown to be superior to chitosan. In addition, the cytotoxicity was similar to chitosan.  相似文献   
907.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   
908.
909.
Pseudonocardia autotrophica converted Vitamin D(3) to 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3). The hydroxylation of Vitamin D(3) with P. autotrophica was enhanced by the addition of cyclodextrin. In this microbial hydroxylation, a new Vitamin D(3) metabolite was observed in the reaction mixture of P. autotrophica and Vitamin D(3), and was isolated in a pure form by several steps of chromatography. The structure of the new metabolite was determined to be 2alpha,25-dihydroxyvitamin D(3) by UV, NMR and mass spectroscopic analyses. Biological evaluation of the new metabolite was conducted by means of several experiments.  相似文献   
910.
Diabetes induces changes in the structure and function of the extracellular matrix (ECM) in many tissues. We investigated the effects of diabetes, physical training, and their combination on the gene expression of ECM proteins in skeletal muscle. Mice were divided to control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups (T, DT) performed 1, 3, or 5 wk of endurance training on a treadmill. Gene expression of calf muscles was analyzed using microarray and quantitative PCR. Training group samples were collected 24 h after the last training session. Diabetes affected the gene expression of several collagens (types I, III, IV, V, VI, and XV), some noncollagenous glycoproteins, and proteoglycans (e.g., elastin, thrombospondin-1, laminin-2, decorin). Reduced gene expression of collagens in diabetic skeletal muscle was partially attenuated as a result of physical training. In diabetes, mRNA expression of the basement membrane (BM) collagens decreased and that of noncollagenous glycoproteins increased. This may change the structure of the BM in a less collagenous direction and affect its properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号