首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47399篇
  免费   3353篇
  国内免费   19篇
  50771篇
  2024年   52篇
  2023年   175篇
  2022年   565篇
  2021年   912篇
  2020年   568篇
  2019年   682篇
  2018年   1027篇
  2017年   906篇
  2016年   1477篇
  2015年   2320篇
  2014年   2667篇
  2013年   2978篇
  2012年   3940篇
  2011年   3778篇
  2010年   2394篇
  2009年   2184篇
  2008年   3028篇
  2007年   2909篇
  2006年   2540篇
  2005年   2356篇
  2004年   2161篇
  2003年   1864篇
  2002年   1614篇
  2001年   1301篇
  2000年   1228篇
  1999年   990篇
  1998年   393篇
  1997年   338篇
  1996年   245篇
  1995年   209篇
  1994年   207篇
  1993年   172篇
  1992年   326篇
  1991年   295篇
  1990年   266篇
  1989年   226篇
  1988年   173篇
  1987年   163篇
  1986年   131篇
  1985年   105篇
  1984年   78篇
  1983年   84篇
  1982年   63篇
  1981年   53篇
  1980年   54篇
  1979年   69篇
  1978年   51篇
  1977年   50篇
  1976年   43篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
261.
The FER gene encodes a cytoplasmic tyrosine kinase with a single SH2 domain and an extensive amino terminus. In order to understand the cellular function of the FER kinase, we analyzed the effect of growth factor stimulation on the phosphorylation and activity of FER. Stimulation of A431 cells and 3T3 fibroblasts with epidermal growth factor or platelet-derived growth factor results in the phosphorylation of FER and two associated polypeptides. The associated polypeptides were shown to be the epidermal growth factor receptor or the platelet-derived growth factor receptor and a previously identified target, pp120. Since pp120 had previously been shown to interact with components of the cadherin-catenin complex, these results implicate FER in the regulation of cell-cell interactions. The physical association of FER with pp120 was found to be constitutive and was mediated by a 400-amino-acid sequence in the amino terminus of FER. Analyses of that sequence revealed that it has the ability to form coiled coils and that it oligomerizes in vitro. The identification of a coiled coil sequence in the FER kinase and the demonstration that the sequence mediates association with a potential substrate suggest a novel mechanism for signal transduction by cytoplasmic tyrosine kinases.  相似文献   
262.
263.
Transforming growth factor beta (TGF-beta), a potent regulator of bone formation, has bifunctional effects on osteoblast replication and biochemical activity that appear differentiation dependent. We now show that cell surface binding sites for TGF-beta vary markedly among fibroblasts, bone-derived cells, and highly differentiated osteosarcoma cultures from fetal rats. Expression of betaglycan and type II receptors decline relative to type I receptor expression in parallel with an increase in osteoblast-like activity, predicting that the ratio among various TGF-beta binding sites could influence how its signals are perceived. Bone morphogenetic protein 2 (BMP-2), which induces osteoblast function, does not alter TGF-beta binding or biochemical activity in fibroblasts and has only small effects in less differentiated bone cells. In contrast, BMP-2 rapidly reduces TGF-beta binding to betaglycan and type II receptors in osteoblast-enriched primary cell cultures and increases its relative binding to type I receptors in these cells and in ROS 17/2.8 cultures. Pretreatment with BMP-2 diminishes TGF-beta-induced DNA synthesis in osteoblast-enriched cultures but synergistically enhances its stimulatory effects on either collagen synthesis or alkaline phosphatase activity, depending on the present state of bone cell differentiation. Therefore, BMP-2 shifts the TGF-beta binding profile on bone cells in ways that are consistent with progressive expression of osteoblast phenotype, and these changes distinguish the biochemical effects mediated by each receptor. Our observations indicate specific stepwise actions by TGF-beta family members during osteoblast differentiation, developing in part from changes imprinted by BMP-2 on TGF-beta receptor stoichiometry.  相似文献   
264.
The DNA–membrane complex has been the subject of intensive investigation for over 35 years as the possible site for DNA replication in the prokaryotic cell and the site through which newly synthesized chromosomes are segregated into daughter cells. However, the molecular mechanisms which control these phenomena are, for the most part, poorly understood despite genetic, biochemical, and morphologic evidence in favour of their existence. This is probably due to the transient nature and non-covalent interactions that occur between DNA and the membrane. In addition, there is a paucity of knowledge concerning the nature of the membrane receptors for DNA and whether the membrane plays simply a structural or metabolic role in the two processes. Plasmids can provide important insights into the role of the membrane in replication and partitioning because the plasmid life cycle is relatively simple, with replication occurring during the cell cycle and partitioning during cell division. The replicon model of Jacob et al. (1963, Cold Spring Harbor Symp Quant Biol 28: 329–348) still represents a good conceptual framework (with modifications) to explain how plasmid replication and partitioning are linked by the membrane. In its simplest form, the model focuses on specific membrane binding sites (possibly along the equator of the cell) for plasmid (or bacterial) replication, with the membrane acting as a motive force to separate the newly synthesized replicons and their attached sites into daughter cells. Indeed, proteins involved in both plasmid replication and partitioning have been found in membrane fractions and some plasmids require membrane binding for initiation and an active partitioning. We propose that several factors are critical for both plasmid DNA replication and partitioning. One factor is the extent of negative supercoiling (brought about by an interplay of various topoisomerases, but most importantly by DNA gyrase). Supercoiling is known to be critical for initiation of DNA replication but may also be important for the formation of a partition complex in contact with the cell membrane. Another factor is the presence of specific subdomains of the membrane which can interact specifically with origin DNA and possibly other regions involved in partitioning. Such domains may be induced transiently or be present at all times during the cell cycle.  相似文献   
265.
266.
A novel Bacillus gene was isolated and characterized. It encodes a homolog of Saccharomyces cerevisiae Pet112p, a protein that has no characterized relative and is dispensable for cell viability but required for mitochondrial translation. Expression of the Bacillus protein in yeast, modified to ensure mitochondrial targeting, partially complemented the phenotype of the pet112-1 mutation, demonstrating a high degree of evolutionary conservation for this as yet unidentified component of translation.  相似文献   
267.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   
268.
Y T Ro  C Y Eom  T Song  J W Cho    Y M Kim 《Journal of bacteriology》1997,179(19):6041-6047
Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. The final specific activity of the purified enzyme was 1.12 micromol of NADH oxidized per min per mg of protein. The molecular weight of the native enzyme was determined to be 140,000. Sodium dodecyl sulfate-gel electrophoresis revealed a subunit of molecular weight 73,000. The optimum temperature and pH were 30 degrees C and 7.0, respectively. The enzyme was inactivated very rapidly at 70 degrees C. The enzyme required Mg2+ and thiamine pyrophosphate for maximal activity. Xylulose 5-phosphate was found to be the best substrate when formaldehyde was used as a glycoaldehyde acceptor. Erythrose 4-phosphate, glycolaldehyde, and formaldehyde were found to act as excellent substrates when xylulose 5-phosphate was used as a glycoaldehyde donor. The Kms for formaldehyde and xylulose 5-phosphate were 1.86 mM and 33.3 microM, respectively. The enzyme produced dihydroxyacetone from formaldehyde and xylulose 5-phosphate. The enzyme was found to be expressed only in cells grown on methanol and shared no immunological properties with the yeast dihydroxyacetone synthase.  相似文献   
269.
Abstract: Given the extreme lability and the facile inactivation of the messenger nitric oxide (NO) by many reactive biochemical species, it has been suggested that some intermediate compounds, for example, S -nitrosothiols, may act to stabilize NO and at the same time to preserve its biological activity. To test this hypothesis, we investigated if the S -nitrosothiol of glutathione, which is the predominant low molecular weight thiol in CNS, is present in the rat brain. The HPLC analysis of cerebellar extract from [35S]cysteine-prelabeled slices suggested that S -nitrosoglutathione (GSNO) was indeed present in rat brain. To detect endogenous GSNO, a methodology based on liquid chromatography-mass spectrometry was developed. Besides an unequivocal identification of the endogenous GSNO, this method also permitted its precise quantification using 15N-labeled GSNO ([15N]-GSNO) as internal standard. GSNO level in adult cerebellum amounts to 15.4 ± 1.4 pmol/mg of protein. This is the first direct demonstration of the presence of endogenous GSNO in CNS. The packaging of NO in the form of GSNO might serve to facilitate its transport, prolong its life, and target its delivery to specific effectors.  相似文献   
270.
We have purified DNA from gill tissue of a marine bivalve, Calyptogena soyoae, collected from the deep-sea cold seep communities in Sagami Bay, Japan. An rRNA gene was amplified, cloned, and sequenced. In situ hybridization revealed that the sequence is that of a bacterial endosymbiont within the gill of C. soyoae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号