首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1788篇
  免费   119篇
  2022年   18篇
  2021年   17篇
  2020年   10篇
  2019年   13篇
  2018年   29篇
  2017年   31篇
  2016年   38篇
  2015年   63篇
  2014年   60篇
  2013年   94篇
  2012年   81篇
  2011年   103篇
  2010年   66篇
  2009年   48篇
  2008年   68篇
  2007年   72篇
  2006年   100篇
  2005年   87篇
  2004年   93篇
  2003年   81篇
  2002年   74篇
  2001年   47篇
  2000年   45篇
  1999年   32篇
  1998年   11篇
  1997年   15篇
  1996年   14篇
  1995年   17篇
  1994年   14篇
  1993年   23篇
  1992年   26篇
  1991年   38篇
  1990年   34篇
  1989年   35篇
  1988年   33篇
  1987年   32篇
  1986年   37篇
  1985年   24篇
  1984年   15篇
  1983年   15篇
  1982年   14篇
  1981年   17篇
  1980年   7篇
  1979年   26篇
  1978年   15篇
  1977年   11篇
  1976年   9篇
  1975年   8篇
  1974年   7篇
  1973年   11篇
排序方式: 共有1907条查询结果,搜索用时 15 毫秒
21.
The capsid protein of hepatitis B virus (p21c) is made of 183 amino acids coded for by the C gene. By using p21c isolated from Dane particles (hepatitis B virus) as an immunogen, a monoclonal antibody (no. 2212) which recognized an epitope dependent on the phosphorylation of p21c was raised. The binding of no. 2212 antibody to authentic p21c was completely inhibited by a synthetic undecapeptide with a sequence of RRRSQSPRRRR, representing amino acids 165 to 175 of p21c, only when the peptide was phosphorylated. Either or both of Ser-168 and Ser-170 were phosphorylated in p21c in vivo, therefore, and contributed to the manifestation of the epitope. No. 2212 antibody bound to p21c from core particles derived from Dane particles or hepatocellular carcinoma tissues (PLC/342) propagated in nude mice but did not bind to p21c from core particles expressed in Escherichia coli or yeast cells, indicating different states of phosphorylation in them. Nonphosphorylated p21c showed a higher affinity for the viral DNA than did phosphorylated p21c. Since the serum from an asymptomatic carrier, with a high titer for antibody to hepatitis B core antigen, specifically bound to phosphorylated undecapeptide (amino acids 165 to 175), the epitope would stimulate humoral antibody responses in the human host.  相似文献   
22.
Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF.   总被引:53,自引:15,他引:38       下载免费PDF全文
MAP kinase is activated and phosphorylated during M phase of the Xenopus oocyte cell cycle, and induces the interphase-M phase transition of microtubule dynamics in vitro. We have carried out molecular cloning of Xenopus M phase MAP kinase and report its entire amino acid sequence. There is no marked change in the MAP kinase mRNA level during the cell cycle. Moreover, studies with an anti-MAP kinase antiserum indicate that MAP kinase activity may be regulated posttranslationally, most likely by phosphorylation. We show that MAP kinase can be activated by microinjection of MPF into immature oocytes or by adding MPF to cell-free extracts of interphase eggs. These results suggest that MAP kinase functions as an intermediate between MPF and the interphase-M phase transition of microtubule organization.  相似文献   
23.
Summary Murine IgG1 monoclonal antibodies (mAbs), ITK-2 and ITK-3, were generated against a small-cell lung cancer (SCLC) cell line. Enzyme-linked immunosorbent assay using a variety of established cell lines as substrates, immunoperoxidase staining of freshly frozen tissue sections, and fluorescence-activated cell sorter analysis of peripheral blood leukocytes showed that these mAbs recognize a part of the SCLC-associated cluster 1 antigen. In immunoprecipitation studies, both ITK-2 and ITK-3 bound to a 145-kDa glycoprotein of SCLC cell membrane extracts, as did MOC-1 and NKH-1, which both recognize the cluster 1 antigen. However, because the binding of125I-labeled ITK-2 to SCLC cells was not inhibited by MOC-1 or NKH-1, the binding site of ITK-2 on SCLC cells appeared to be different from that of either MOC-1 or NKH-1. Unexpectedly, binding of125I-labeled ITK-2 to SCLC cells increased in the presence of ITK-3. This ITK-3-induced increase in ITK-2 binding was due partly to an increase in the number of binding sites for ITK-2 on SCLC cells. Addition of ITK-3 may, therefore, improve the effectiveness of ITK-2-based tumor detection or therapy.  相似文献   
24.
Differential down-regulation of protein kinase C subspecies in KM3 cells   总被引:13,自引:0,他引:13  
The down-regulation of protein kinase C (PKC) subspecies in KM3 cells (a pre-B, pre-T cell line) has been examined. The PKC from KM3 cells was resolved into two subspecies, type II (mainly beta II) and type III (alpha), upon hydroxyapatite column chromatography. Biochemical and immunocytochemical analysis revealed that, when these cells were treated with 12-O-tetradecanoylphorbol 13-acetate (TPA), the time course of down-regulation of the PKC subspecies was different; type II PKC was translocated and depleted from the cell more quickly than type III enzyme. The results suggest that each PKC subspecies plays a different role in the cellular response to TPA and probably to other external stimuli.  相似文献   
25.
26.
Lignoceroyl-CoA:sphingosine lignoceroyltransferase, which catalyzes synthesis of lignoceroylsphingosine, the ceramide that is a major component of sphingolipids in mammalian tissues, has been solubilized from microsomes of rat brain and liver and partially purified. The microsomes were treated with 1 M sodium thiocyanate in N,N-bis(2-hydroxyethyl)glycine (Bicine) buffer containing 20% glycerol. The supernatant fraction obtained after centrifugation was fractionated by Sepharose CL-4B gel filtration. The ceramide synthetase activity was recovered in a small fraction containing high molecular weight proteins. Analysis of proteins and lipids indicated that the fraction was not simply a fragment of microsomes. The activity for synthesis of lignoceroylsphingosine, which is abundant in nervous system, was compared with that for the synthesis of stearoylsphingosine, which is more enriched in extraneural sphingolipids, in brain and liver microsomes. Despite the difference in relative abundance of molecular species of ceramides in these tissues, the activity for lignoceroylsphingosine synthesis was not more enriched in brain than in liver.  相似文献   
27.
A plasma prealbumin variant with a methionine-for-valine substitution at position 30 is closely associated with familial amyloidotic polyneuropathy (FAP) type I. Secondary ion mass spectrometry of the tryptic digest of a carrier's prealbumin could easily detect an abnormal peptide containing the substitution besides the normal peptide. This is a sensitive and reliable method for the diagnosis of FAP.  相似文献   
28.
Several reports have suggested that variations of albumin concentration in the incubation medium can modulate the magnitude of transferrin binding to the cells. We have investigated this problem further using K562 cells. In the absence of human serum albumin, transferrin binding demonstrated a non-saturable curve which, upon Scatchard analysis, showed two components with high and low affinities. In the presence of 0.5% human serum albumin, the low-affinity but not the high-affinity component was totally inhibited and, thus, the binding showed a saturation plateau at transferrin concentration of 6 micrograms/ml. Increasing concentrations of human serum albumin in the incubation medium led to progressive inhibition of transferrin binding, reaching a plateau at 0.2% human serum albumin. At this concentration transferrin binding was about 12 ng/10(6) cells, corresponding to the saturation plateau for high-affinity binding. Low-affinity transferrin binding in the absence of human serum albumin could readily be displaced by subsequent addition of albumin. Similar inhibition was obtained by another serum protein, ceruloplasmin, suggesting that this inhibition is not unique to albumin and may be a common property of all proteins. Incubation at 37 degrees C with 59Fe-labeled transferrin indicated that all iron uptake occurs through high-affinity binding. We conclude that the reported variations in magnitude of transferrin binding by the cell due to variations in albumin concentration are the result of inhibition of low-affinity binding of transferrin by albumin.  相似文献   
29.
The effect of taurine (2-aminoethanesulphonic acid) on myocardial slow action potentials (APs) and accompanying contractions was examined in isolated perfused chick hearts and reaggregated cultured cells. Isoproterenol (ISO), histamine (HIS), or tetraethylammonium (TEA) induced slow APs and contractions in hearts whose fast Na+ channels had been inactivated by elevated K+. Taurine (10 mM) not only failed to induce slow APs, but actually decreased ISO (10(-8) M), HIS (10(-4) M), or TEA (10 mM) induced slow APs and contractions transiently (about 30s-2 min after the addition of taurine). The properties of the slow APs recovered to control levels by 7-13 min after the addition of the taurine; at this time, there was an increase in developed tension of the contraction accompanying the slow APs. These results suggest that the positive inotropic action of taurine is not mediated through an increase in the slow inward Ca2+ current. However, the transient depression of Ca2+-dependent slow APs by taurine probably explains the transient negative inotropic effect of taurine.  相似文献   
30.
Summary This study was undertaken, employing the immunoenzyme method, to confirm the presence of retinol-binding protein in human pancreatic islets, and to compare its distribution with that of prealbumin, insulin, glucagon, somatostatin and pancreatic polypeptide. It was found that most islet cells contained retinol-binding protein, although centrally located cells showed stronger reactivity than those in the peripheral region. The distribution of each of the five polypeptides differed from that of retinolbinding protein, indicating that these peptides did not cross-react with anti-retinol-binding protein antibody. Islet cells which contained prealbumin, on the other hand, were mostly classified as A cells. Further studies are necessary to confirm whether the islet cells produce retinol-binding protein or only store it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号